Search the Community

Showing results for tags 'radar'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • News
    • New Users Introduction
    • Announcements
  • Digilent Technical Forums
    • FPGA
    • Digilent Microcontroller Boards
    • Non-Digilent Microcontrollers
    • Add-on Boards
    • Scopes & Instruments and the WaveForms software
    • LabVIEW
    • FRC
    • Other
  • General Discussion
    • Project Vault
    • Learn
    • Suggestions & Feedback
    • Buy, Sell, Trade
    • Sales Questions
    • Off Topic
    • Educators
    • Technical Based Off-Topic Discussions

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start





Website URL







Found 1 result

  1. I build radar systems for a living, and I'm testing the Analog Digilent 2 as an A/D, timing control for other RF hardware, RF switch control, trigger source. Here's what I need to do: Write the software with python using the Waveforms SDK running on Windows 10. Acquire signals on 2 analog channels simultaneously. This must be triggered at a periodic rate on an input other than the two analog in channels. Generate a pulse width of p nanoseconds at an x kilohertz rate. This is a TTL signal. This pulse is used for RF pulse generation, but also as a trigger for the analog channels. All digital out signals must be synchronized. Capture n samples on both channels for a maximum of 256 triggers. Typically 128 or 256 is used -- a 2^n number of triggers is used for FFT processing. Capture to arrays (or lists in the case of python) must be real time. Rearrange the lists so that an FFT can be taken from the ith sample of each trigger event. So if I have 128 trigger events, and I capture 1024 samples on each event, then I take 128 values from index 0 of all trigger events and compute a complex FFT. Then I repeat for index 1, 2, … 1024. In radar terms, each sample relates to a range value. If sampling at 80 MSPS, each sample equates to 2 meters of range. So 1024 samples = 2048 meters of total range. The complex FFT computes the Doppler frequencies seen for each of those sample range points. Progress: A. I have successfully used the example SDK program named to generate a x kHz pulse rate with p width in nanoseconds. I modified it to continue doing it until the program is terminated. The test values are 4 kHz pulse rate (trigger rate) and the pulse width is 300 nanoseconds. The output is on DIO Channel 1. The AD2 works great at this. B. I have successfully used the example SDK program named to acquire signals. I modified this source to: digitize Channel 0 and Channel 1; trigger on an External Trigger, which is now the inputted by placing a jumper wire between DIO Channel 1 and Trigger 1 Channel; Continue to trigger for 128 times; Plot last set of data. C. I am using a 10 MHz and 20 MHz signal on Channel 0 and Channel 1, respectively. This is correctly plotted by the application. D. I was delighted to see the code was working...or so I thought. I added a time check to confirm 128 triggers were completed in the appropriate time. The time check came back as 0.156 seconds for 128 triggers of 1024 samples. The answer should have been (1/4000)*128 = 0.032 seconds. So my capture time was almost 5 times too long. I confirmed that even with two pulses the system cannot transfer fast enough. And even if I get down to 10 samples per trigger, there is little change in timing. I computed that the fast PRF (trigger event speed) = about 850 Hz. There is still some unexplained overhead time, but it is close to that number. So keeping under 850 Hz, the system is real time. Unfortunately, that equates to about 14 mph at usable radar frequencies. I need to get up to about 4000 Hz to be of use. See my attached Code written in python. I am using a Windows 10 Pro laptop running an i7 processor with 64 GB of RAM. I have the AD2 plugged into a spare USB port. 10 and 20 MHz signals feed the analog channels from a crystal oscillator as a test of the capture. I have available external waveform generators, oscopes, and spectrum analyzers. So given my test in D, does anyone know what I can do to improve performance? Is there something wrong in my code? Am I misunderstanding the capabilities of the AD2? If the system had a USB 3.0, I know it would be able to keep up. But given that is not available, what should I try if anything? Radar Data Capture With Internal