Ciprian

Digilent Staff
  • Content Count

    41
  • Joined

  • Last visited

  • Days Won

    3

Ciprian last won the day on February 21

Ciprian had the most liked content!

About Ciprian

  • Rank
    Frequent Visitor

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Hi @AndyCap, Unfortunately I don't have the time to look in to this but judging by what you said I would look in to the IP driver of the audio system <kernel>/sound/soc/adi/axi-i2s.c (as far as I remember), how the buffers are handled in regards to the DMA transfer. The issue might be that full and the empty flags are nor properly handled in the driver or in the HDL IP. Sorry for not being able to help more. -Ciprian
  2. Hi, We are planning to update our project to 2018.3 but we don't have a precise release date for it yet. If it's not mandatory to use 2018.3 please stick with 2017.4 with this project for the time being. -Ciprian
  3. Ciprian

    Digital Twin

    Hi @Kris Persyn, It depends on how you manage your resources, driving immersive visuals on a HDMI display can be done in multiple ways at different resolutions, some are PL taxing others are DDR taxing; you could generate entire frame buffers in PL or PS or you could find a optimal algorithm to change just the previous frame or you could allocate a high number of frame buffers and then run them in a loop. It also depends on how math lab synthesizes the IP you will need to add to your design. If you design your project properly and don't aim for a resolution higher more 720p( I'm being conservative, we managed to drive the HDMI at 1080p with processing filters without a problem) I think it should be enough for what you want to do, resource wise. My suggestion, download and install Vivado, download and install the board files, create and implement your project look at the resource consumption and then buy a board. - Ciprian
  4. Ciprian

    zybo hdmi to vga out

    Hello @Gourav, Unfortunately the issue could be in multiple locations and it's hard to determine this from the block diagram, it's probably a small bug either in the block design or in the HLS IP. Either way please send the archive with project so that I can look over it. Thank you -Ciprian
  5. Try adding this: &i2c0 { clock-frequency = <100000>; status = "okay"; }; Here: <petalinux_project>/project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi -Ciprian
  6. I'm not sure about this but I would look in to the HPD signal, as far as I know in the Nexys Video demo is set up so that the HPD is a pass-trough signal which might interfere with the zybo z7 design. I will ask our colleague who has more experience in HDMI if he has some input regarding your question. -Ciprian
  7. Hi @Amin, It depends on what you are planning to do. If you only need a Linux running on your Zybo Z7-20, then I can give you our pre-build BOOT.bin, kernel+rootfs images. This approach is based on our Demo HW platform, you will have the benefit of a lot of IPs in the design which allows a very versatile approach to the board, unfortunately this will not allow you to add any new IP to the design. If you want to build you own platform and base the on board Linux on it then you will need to install petalinux on linux(I recommend Ubuntu) and build/customize it the way you want, @jpeyron sent you the links for this in the previous post. -Ciprian
  8. Hi @kotra sharmila, Please follow the steps provided in this read me to modify/create your project. Please kkep in mind the following NOTE at step 12 - Ciprian
  9. Hi @Jeremy, Petalinux creates a series of .dts files based on your Hardware Description File, these are overwritten by the system-user.dtsi located in: <petalinux project root>/project-spec/meta-user/recipes-bsp/device-tree/files and the automatically created device tree files are here: <petalinux project root>/components/plnx_workspace/device-tree/device-tree-generation The petalinux project for Zybo-z7-20 from our github is configured based on this Vivado project which contains VTC, HDMI, I2S and other IPs. Consequently the system-user.dtsi is used to redefine parameters of the automatically generated device tree files. What you will have to do is rewrite the system-user.dtsi to suit your needs. Basically as far as I can tell from your .hdf you only have one axi gpio in the PL. This means that you will have to remove all the IP's from it which are not in your PL(you can see a list of them in the error you sent us) and if you want to use a different driver for your axi gpio IP you will have to add it to the system-user.dtsi and make the changes there -Ciprian
  10. Hi @Ben B, Regarding your question on using Zybo Z7-20 to capture HDMI signals. It is possible and using UIO is also an option, but because we are using the VDMA to get the Video signal it's better to use a DMA driver. Unfortunately Xilinx does not provide a complete DMA driver for any of their DMA IPs, therefore I have been using this DMA driver which includes the VDMA functionality as well. To make things as easy as possible, I generated a example project for you with the VDMA used to capture video streams and OpenCV functions to write a *.bmp file. What you need to do in order to get it working is: 1. load the HDMI2BMP.elf to /home/root on your rootfs portion of your board 2. after the board boots you need to load the axi_dma_driver root@Zybo-Z7-20:~# insmod /lib/modules/4.9.0-xilinx-v2017.4/extra/xilinx-axidma.ko 3. run the HDMI2BMP.elf This will generate a test.bmp in /home/root with the captured image. The source file for the app is in the SDK folder. Changes which I had to do to the original petalinux project are: - create a new module in petalinux petalinux-create -t modules -n xilinx-axidma --enable - copy the necessary file to Petalinux-Zybo-Z7-20/Zybo-Z7-20/project-spec/meta-user/recipes-modules/xilinx-axidma/files and update the MAKE file and the xilinx-axidma.bb - update the system-user.dtsi in /Petalinux-Zybo-Z7-20/Zybo-Z7-20/project-spec/meta-user/recipes-bsp/device-tree/files - write the demo program Hope this helps. -Ciprian Zybo-Z7-20-HDMI-RX_peta.zip
  11. It is not recommended to install petalinux anywhere else then "/opt/pkg/petalinux", we encountered similar issues when installing petalinux in other locations... That's why we usually specify in our petalinux project how to install petalinux and where. -Ciprian
  12. Hi @lowuze, As far as I know there is no Digilent Linux for PYNQ, we however have Petalinux for Arty Z7-20 which is similar to the PYNQ(Arty does not have a Microphone), it has by default XADC capabilities activated (driver in the kernel and configured device tree). Unfortunately we do not have a example project on how to read the XADC from Linux but you can access it in: /sys/bus/iio/devices/iio:device0 For more information about how to use it please search for Xilinx XADC on linux, THIS might also give you a better understanding on how the driver works and how to interface with it. -Ciprian
  13. Hi @Hong, Thank you for bringing up this issue, unfortunately without a log file we don't actually know what's wrong with it because the message you have provided is a generic error message. Could you please provide the log file? Taking in to account that 2018.3 is a very recent product (currently 4 days old) we have not yet updated our demo projects to this version. Differences between Vivado versions tend to come with changes which might make our demos fail. We usually recommend a specific Vivado version in our demo projects, if you go to Zybo-Z7-20-pcam-5c Demo you will notice that in the description of the project we specify "Created for Vivado 2017.4". We can guarantee that it will work in that version. If you need it to work with 2018.3 you will have to wait for us to update our demo or try to update it yourself. - Ciprian
  14. My first suggestion was just basically replacing PmodTMP3_0: PmodTMP3@40900000 { compatible = "xlnx,PmodTMP3-1.0"; interrupt-names = "I2C_Interrupt"; interrupt-parent = <&microblaze_0_axi_intc>; interrupts = <4 2>; reg = <0x40900000 0x1000>; with PmodTMP3_0: PmodTMP3@40900000 { clock-frequency = <100000000>; compatible = "xlnx,xps-iic-2.00.a"; interrupt-names = "I2C_Interrupt"; interrupt-parent = <&microblaze_0_axi_intc>; interrupts = <4 2>; reg = <0x40900000 0x1000>; and it should work... In theory. Either way, I'm glad you got it going and thank you for your tutorial. - Ciprian
  15. Hi @troden, "/dev/misc/rtc" is the place where RTCs will be instantiated once the RTC driver has been called and applied, for many embedded processors this is either part of their architecture or there is a explicit RTC IC on the board for them whit the driver in the kernel module. Unfortunately this not the case with the Pmod RTCC, this one is an external RTC . You first need to either add the PmodRTCC IP or the AXI I2C IP to your hardware design, then you need to update the dts to include the IP and finally, before building the kernel, you need to include the xilinx I2C driver (and optionally if you managed to adapt the mcp7941x linux driver to work with the xilinx i2c driver include that one as well) after building the kernel you can start accessing the RTC in "/dev/misc/rtc" if the mcp7941x linux driver works otherwise it will be a generic I2C device. Here is a link on how to use the xilinx I2C driver. Here is a link on the mcp7941x linux driver discussion on a separate forum. - Ciprian