Leaderboard


Popular Content

Showing content with the highest reputation since 06/25/20 in all areas

  1. 1 point
    Ana-Maria Balas

    PMOD I2S2 IP

    Yes, I've already give him the link with some Reference projects which contains also pdf files with documentation for each project, and it explains very well the Uart component which is used with the PmodRS232 (in Interface Reference Component from the Reference projects). The info is there... https://reference.digilentinc.com/reference/pmod/pmodrs232/start?&_ga=2.200020910.1057145837.1593523143-180711290.1584371590#reference_projects
  2. 1 point
    Hi all, I've developed a few audio and video example designs for the Nexys Video in VHDL and posted them here: https://github.com/amb5l/tyto_project I am planning to expand on the HDMI IP to make it more general purpose, and add DisplayPort eventually. There is more stuff in the pipeline. Grateful for any feedback.
  3. 1 point
    JColvin

    Open Logger : Function Gen issue ..

    Hi @Raghunathan, Could you attach a picture of your settings? I was unable to replicate the situation regarding the peak to peak voltage (my screenshot is using 50 Hz, but 60 Hz did the same as well). With regards to the square wave appearing curved, I was only able to see this when I zoomed in so that the time base was at 2 uS/division or less but at that point you are just viewing the output settling time of the requested change which should be about 580 nS as noted on slide 91 on the detailed Microchip Masters Presentation. Thanks, JColvin
  4. 1 point
    Ana-Maria Balas

    pmod AD1 or DA1 digilent

    Hello @farzan, 1. The first critical messages doesn't affect your project. It means that the IP was tested with a project that was created with a different board than yours,but this doesn't have any impact on your project, because it is a generic IP that can be used with all Digilent boards. 2. Because you have errors, then the SDK project cannot be build and therefore you cannot program the FPGA. You have to solve the errors first. The error say that the project you created overflowed the maximum capacity of your allocated BRAM memory with 92408 bytes. This means that you didn't allocate enough internal BRAM memory for the Microblaze processor. You must go back to Vivado project, select the Address Editor tab, then increase the microblaze_0_local_memory for Data and for Instruction to maximum I think 1MB should work. Rerun the generation of bitstream and update the Linker Script (right click on the project name in SDK and Generate Linker Script )
  5. 1 point
    I've got a little update on this project. I managed to get this thing running, by using modified register settings from raspiraw repository on github. So it is definitely possible to use this camera with Zybo Z7-20 board. However I did this with my own MIPI receiver, didn't check compatibility with Xilinx IP-core. Following image is only with white balance correction.
  6. 1 point
    I've developed a few audio and video example designs for the Nexys Video in VHDL and posted them here: https://github.com/amb5l/tyto_project I am planning to expand on the HDMI IP to make it more general purpose, and add DisplayPort eventually. There is more stuff in the pipeline.
  7. 1 point
    zygot

    new Nexys Video example designs

    @amb5l, You might want to consider posting this to the Digilent Project Vault, where it belongs. By posting it to where lots of FPGA related questions are posted every day your visibility will disappear making it invisible to most visitors. Just a thought.
  8. 1 point
    NightTrain

    Many dozens of signals to monitor.

    Thank you.
  9. 1 point
    Hello @macellan, That's because you've already added one. I can see it under the XADC System monitor.
  10. 1 point
    I think of std_logic_vector the same way I would think of digits in a number... the rightmost digit is digit zero. It most likely isn't the best way set things up for this example, but it avoids the need to swap the bit ordering in the ASCII characters. Oh, for the button synchronization... signals take time to get across the chip (speed of light, capacitance and so on), so different parts of the design can see different values for the same signal as it change unless. As you can't control when the user might press the button you have to sample the value of the input signal on the clock edge, holding that in a register. That registered value is then used drive the rest of your logic. There is a slight complication - If the signal from the button changes state *exactly* on the clock edge, the flipflop might not be able to correctly register as a 1 or a 0, but could be in some weird "metastable" state that takes a short while to become either a 1 or a 0. To stop this causing bugs in the operation of the logic deeper in the deign, the output of that fliplfop is then sampled a second time to get a "known good, either 1 or 0" signal, that can get to where it needs to within a clock cycle. Hence the design pattern... btn gets sampled into btn_metastable (which is a bit dodgy if you use it), and then btn_metastable gets sampled into btn_synchronized, which is then used by the rest of the logic.
  11. 1 point
    JColvin

    Microblaze issues for a beginner

    Hi @macellan, Could you attach a picture of your block design? The description of your steps sound correct (and the running connection automation can add some more items depending on when individual pieces of the block diagram was added and when connection automation was run). As for when different pieces were added to the block diagram, it can make a difference, but really only during the Connection Automation and Block Automation when you tell Vivado what sort of connections you would like it to make. Otherwise, the 2018.2 guide should work fine for 2019.1. Thanks, JColvin
  12. 1 point
    xc6lx45

    Microblaze issues for a beginner

    Hi, >> but I feel like lost in documents Welcome to FPGAs. This is pretty much the name of the game (but it also makes the struggle worthwhile - if it were easy, everybody would do it 🙂 ). As a general direction, a solid (basic) tutorial is good but don't expect to be led by the hand all the way. The constant version changes make this quite difficult (good news: it means there is technological progress ... well at least in theory but the guys from the marketing department said so and they'll surely know ...). More specific directions: Have a look at Microblaze MCS. It's fairly simple - set up the most basic system with some BRAM (=memory "internal" to the FPGA fabric) and one UART. Once you've got that printing "Hello World" - which is mostly a question of baud rates and not mixing Tx/Rx pins, you can add features one by one and the sky is the limit. Well, at least until the little girl next door pulls out her Raspberry Pi, running four cores at 10x the clock frequency - don't complain no one told you: by absolute standards, the performance of any softcore CPU is pathetic, compared to a regular ASIC CPU on the same technology node. So eventually you'll have to move into FPGA territory, or it makes little sense except as a learning exercise.