Leaderboard


Popular Content

Showing content with the highest reputation since 12/13/18 in all areas

  1. 2 points
    Hello @Bryan_S, Here is a demo project for Cmod S6 from https://reference.digilentinc.com/reference/programmable-logic/cmod-s6/start. I looked into the source files and there is clk_gen_50MHz.vhd. You can see in the top.vhd file how the clk_gen_50MHz is instantiated and used. I don't know what is the clk16x in your code, but here are some source files for serial port serialport_v3.zip The sources are for Nexys4 DDR which has a 100 MHz system clock. But in your case, if you use the clk_gen_50MHz, you'll have a 50 MHz clock instead of 100 MHz, 9600 baud rate, as shown in the UART_RX_CTRL.vhd file. The same for UART_TX_CTRL.vhd. I don't know if you'll use the sources from above, but I hope it helps. Best regards, Ana-Maria Balas
  2. 2 points
    Hello @bitslip, Things are a little bit more complicated. Indeed, for changing the resolution you have to rewrite some registers. But you also need to make sure that the Video Trimming controller ip generates the required constants for you resolution. I wouldn't recommend to write all the needed registers from the control interface (it would be agonising) Instead I would go with the existent logic for changing the resolution, which is adding a new structure with all the register values. As an example, you can check the OV5640.H file. I much simple and quicker solution would be to use our video scaller ip. This ip was written in HLS and it was used in the fmc pcam adapter demo for re-scalling the video at a 640x480 resolution. You can check the design in here: https://reference.digilentinc.com/learn/programmable-logic/tutorials/zedboard-fmc-pcam-adapter-demo/start Best Regards, Bogdan Vanca
  3. 2 points
    Hi @attila Thank you again for all the support you've provided me for the past weeks. I am now capable of receiving more than 409 characters using the Wrapper I created base from your example. It uses the Record acquisition mode and I set the buffer size to 3 million for now. I'll increase it when the need arises. I used 1 UART controller and branched out its Tx pin to 2 DIO pins of the AD2 (DIO #0 & 1). I transmitted 500 characters: (If Record mode is not the acquisition mode, the received result will be blank) For DIO # 0, it received: with a length of: For DIO #1, it received: with a length of: I could not have done it without your guidance, thank you again and more power to you and Digilent Best regards, Lesiastas
  4. 2 points
    Hi @Blake, I was struggling with the same problem. In Adam's project is mistake which result is an FMC-HDMI module is not recognizable by other devices. The reason for that is not sending EDID at all. The cause of this situation is wrong initialized EDID map. In Adams example EDID is initialized by: but the correct way is: the body of iic_write2 is from LK example: By the way, in LucasKandle example initialization is done in same way as in Adam's example so is the reason why it not worked in your case. I hope it will helps. If you want I will post my working code for a ZedBoard with FMC-HDMI when I clean it because at the moment is kind of messy.
  5. 2 points
    kwilber

    Pmod DA3 clocking

    It seems to me the AXI Quad SPI block is sending address + data. Looking at the .xci file again, I see C_SPI_MEM_ADDR_BITS set to 24 bits. So 24 bits of address and 16 bits of data would yield 40 bits.
  6. 2 points
    Hi @neocsc, Here is a verified Nexys Video HDMI project updated from Vivado 2016.4 to Vivado 2017.4. You should be able to find the updated project in the proj folder . Here is a GitHub project done in HDL using the clocking wizard, DVI2RGB and RGB2DVI IP Cores for another FPGA. Here is a unverified Nexys Video Vivado 2017.4 HDMI pass through project made from the linked Github project. In the next few days I should have the bandwidth to verify this project. thank you, Jon
  7. 2 points
    The warning you pasted is benign and simply means there are no ILAs present in your design. The real issue could be your clock. You should review the datasheet for the dvi2rgb.Table 1 in section 5 specifies RefClk is supposed to be 200Mhz. Also, your constraint should follow the recommendation in section 6.1 for a 720p design. Finally, @elodg gives some great troubleshooting information in this thread.
  8. 2 points
    Hi @akhilahmed, In the mentioned video tutorial, the leds are controlled using "xgpio.h" library but the application is standalone. If you want to use a linux based application you have to use linux drivers for controlling. In the current Petalinux build, which is used in SDSoC platform, UIO driver is the best approach. Steps: 1. Vivado project generation: - Extract .dsa archive from /path_to_sdsoc_platform/zybo_z7_20/hw/zybo_z7_20.dsa - Launch Vivado - In Tcl Console: cd /path_to_extracted_dsa/prj - In Tcl Console: source rebuild.tcl - In this point you should have the vivado project which is the hardware component of SDSoC platform. Open Block Design. Change to Address Editor Tab. Here you will find the address for axi_gpio_led IP: 0x4122_0000 2. Petalinux UIO driver: - Launch SDx - Import zybo-z7-20 SDSoC platform - Create a new SDx linux based project using a sample application (e.g. array_zero_copy) - Build the project - Copy the files from /Dubug/sd_card to SD card - Plug the SD card in Zybo Z7. Make sure that the JP5 is set in SD position. Turn on the baord - Use your favorite serial terminal to interact with the board (115200, 8 data bits, 2 stop bits, none parity) - cd to /sys/class/uio - if you run ls you will get something like: uio0 uio1 uio2 uio3 uio4 uio5 - Now you have to iterate through all these directories and to search for the above mentioned axi_gpio_led address: 0x4122_0000 - For example: cat uio0/maps/map0/addr will output: 0x41220000, which means that the axi_gpio_led can be accessed using linux uio driver through uio0 device. - Code: #include <stdio.h> #include <stdlib.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <stdint.h> #include <unistd.h> #include <fcntl.h> #define UIO_MEM_SIZE 65536 #define UIO_LED_PATH "/dev/uio0" void UioWrite32(uint8_t *uioMem, unsigned int offset, uint32_t data) { *((uint32_t*) (uioMem+offset)) = data; } uint32_t UioRead32(uint8_t *uioMem, unsigned int offset) { return *((uint32_t*) (uioMem+offset)); } void led_count_down(uint8_t *ledMem) { uint8_t count = 0xF; uint8_t index = 0; for (index = 0; index < 5; index++) { UioWrite32(ledMem, 0, count); count = count >> 1; sleep(1); } } int main() { // Set Leds as output int led_fd = open(UIO_LED_PATH, O_RDWR); uint8_t *ledMem = (uint8_t *) mmap( 0, UIO_MEM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, led_fd, (off_t)0); UioWrite32(ledMem, 4, 0x0); // Set all leds as output while(1) { // Start led count-down led_count_down(ledMem); } return 0; } - Build the project and copy the content of Debug/sd_card on SD sd_card - Power on the board and connect to it using a serial terminal - run the following commands: mount mmcblk0p1 /mnt cd /mnt ./project_name.elf - Result: A countdown should be displayed on leds.
  9. 1 point
    JColvin

    PMODs - Spec 1.2.0

    Hi @andresb, I apologize for the delay. The best way to determine if they are complaint with specification 1.2.0 is by looking at their respect Resource Center (such as the Pmod AD1). On the right-hand side under Electrical, you will see the Specification version that the Pmod is currently compliant with. The Pmod Interface Specification 1.2.0 is available directly here: https://reference.digilentinc.com/_media/reference/pmod/pmod-interface-specification-1_2_0.pdf. Let me know if you have any questions about this. Thanks, JColvin
  10. 1 point
    Hi @sgrobler, I am able to successfully connect to my phones WiFi hotspot on firmware 1.3.0. I get the same message pop-up as you regarding the firmware update required, but I click the "OK" option and then select the Instrument Panel where-upon am I greeted with the same message, choose OK again, and then I am brought to the Instrument Panel where I am able to successfully run the OpenLogger. I do agree though that the pop-up message should not be occurring though. I have reached to @AndrewHolzer to help address this. Thank you for the feedback, JColvin
  11. 1 point
    zygot

    Offline Installer

    I've been thinking that we've not been talking about the same things for a while now. In order to use your CMOD you need Vivado to create the configuration bitstreams. The last time I downloaded Vivado it was a file north of 40 GB. Yes, Gigabytes. Xilinx also supplies much smaller installers that require an internet connection in order to install Vivado on you PC. Digilent supplies tools for standalone configuration of the FPGA using bitstream that you create. Also, their tools can supplement Vivado to allow Vivado Hardware Manager to use the Digilent configuration facilities. Digilent also has software development tools and APIs for compiling your own software applications using various interfaces found on their FPGA boards. These files are all reasonably small. Trying to do FPGA development in a room or building without any internet access is going to be difficult without full support from the IT people maintaining your network and computing resources.
  12. 1 point
    Hi @P. Fiery Thank you for the observations.
  13. 1 point
    Hi @jfranz-argo, @kharoonian, and @Franky32, I apologize for the delay. I have sent each of you a PM about this. Thanks, JColvin P.S. to other readers, be sure not have Digilent boards attached when you are reprogramming other FTDI devices. A long list of users will tell you it's an easy mistake to accidentally select the wrong device.
  14. 1 point
    Hey Paolo, I'm glad you found my videos helpful! I've been working on other projects, but if you have any other ideas for videos that you would find helpful let me know. Kaitlyn
  15. 1 point
    You can start with the following tutorials: http://www.ni.com/tutorial/14871/en/ https://reference.digilentinc.com/learn/programmable-logic/tutorials/program_fpgas_through_multisim/start
  16. 1 point
    Hi @cfatt7 Yes, you can use the FDwfAnalogOutConfigure(..., -1, ...) to start channels synchronized. You can also use the FDwfAnalogOutMasterSet to specify the master channel, then starting master channel will also start the slave channels. This is important in case you are using external triggering or cross-triggering with other instruments. Specifying a finite run length is useful to keep different frequencies phase aligned, using the minimum frequency or greatest common divisor. Like 1kHz might be generate as 0.9999999kHz and 2kHz as 2.000000001kHz, which could shift slowly over time. In this case use 1ms (1/1kHz) run time. FDwfAnalogOutRunSet(..., ..., 1.0/min_freq); FDwfAnalogOutRepeatSet(..., ..., 0); See the WF SDK/ samples/ py/ AnalogOut_Sync.py examples
  17. 1 point
    zygot

    Using tera term for two pmods

    Well I think that this is better stated as saying that most serial terminal applications can only connect to one COM port at a time. It is possible to mave multiple UARTs in your FPGA design and connect to multiple serial terminal applications. I like Putty myself, but there are other options. Another possibility is to look around in the Digilent Project Vault and see at least 3 project with source code that might accomplish what you want to do. If you instantiate your own UART you can access any number of internal registers or memory.
  18. 1 point
    Cristian.Fatu

    tera term for two pmods

    Hello, The PmodAD2 communicates over I2C protocol with the main board on which the Pmod is plugged. The PmodAD2 has no UART / USB capabilities. It is the main board that communicates - using its USB-UART capability - with the PC. Connecting the board using a USB cable creates a COM port on the PC. When you open a TeraTerm (or other terminal) connection, you select the COM port. Therefore a possible approach could be to have 2 PmodAD2 connected to a single main board, in different Pmod connectors. The SDK application should gather the AD2 data (measurements), format a text message containing these measurements, and then sending the text message over UART to the PC, to be later visualized in a terminal. What application are you running on the FPGA board ? You should modify it to read the other Pmod as well.
  19. 1 point
    jpeyron

    GPS Pmod

    Hi @cepwin, I'm glad you we able to get to the bottom of the issue. Thank you for sharing what happened. cheers, Jon
  20. 1 point
    Hi @Ahmed Alfadhel I had the C code handy because I have been working on an atan2(y,x) implementation for FPGAs, and had been testing ideas. I left it in C because I don't really know your requirements, but I wanted to give you a working algorithm, complete with proof that it does work, and so you can tinker with it, see how it works, and make use of it. Oh, and I must admit that it was also because I am also lazy 😀 But seriously: - I don't know if you use VHDL or Verilog, or some HLS tool - I don't know if your inputs are 4 bits or 40 bits long, - I don''t know if you need the answer to be within 10% or 0.0001% - I don't know if it has to run at 40Mhz or 400Mhz - I don't know if you have 1000s of cycles to process each sample, or just one. - I don't even know if you need the algorithm at all! But it has been written to be trivially converted to any HDL as it only uses bit shifts and addition/subtraction. But maybe more importantly you can then use it during any subsequent debugging to verify that you correctly implemented it. For an example of how trivial it is to convert to HDL: if(x > 0) { x += -ty/8; y += tx/8;} else { x += ty/8; y += -tx/8;} could be implemented as IF x(x'high) = '0' THEN x := x - resize(y(y'high downto 3), y'length); y := y + resize(x(x'high downto 3), x'length); ELSE x := x + resize(y(y'high downto 3), y'length); y := y - resize(x(x'high downto 3), x'length); END IF My suggestion is that should you choose to use it, compile the C program, making the main() function a sort of test bench, and then work out exactly what you need to implement in your HDL., You will then spend very little time writing, debugging and improving the HDL because you will have a very clear idea of what you are implementing.
  21. 1 point
    attila

    Getting Input Phase Programmatically

    Hi @jamesbraza I constantly see the prefix `rg` in your programs. What is the meaning of `rg` prefix in all array namings? This are so called Hungarian notations originating from physics, to help identifying variable kinds like: rg Array, sz String, i Index, c Count Why does the gain term = V_C1 / V_C#? I would think it's the inverse... gain = output / input = V_C2 / V_C1 This is how the function returns it. You can convert it using 1.0/gain Does the formula you listed, M = gain2 - 1.0, come from a simplification of M = (V_C1 - V_C2) / (V_C2 - 0)? Yes. Also, please see the attached image. It's of input phase. Note sometimes the points are flipped about 360°. My final question is, do you know why this might be happening? The phase should be normalized to +/-PI. The next software version will correct this, but you can correct it in you script/application like this: if phase2.value > math.pi : phase2.value -= 2.0*math.pi if phase2.value < -math.pi : phase2.value += 2.0*math.pi Thank you for the observation.
  22. 1 point
    attila

    Scope custom math channel limitations?

    Hi @P. Fiery You could use the View/Logging/Script to create an up-sampled reference channel like this: var rg = [] var v2 = 0 Scope.Channel1.data.forEach(function(v1){ rg.push((v1+v2)/2) rg.push(v1) v2 = v1 }) // upsampling by 2 doubles the sample rate Scope.Ref1.setData(rg, 2*Scope.Time.Rate.value)
  23. 1 point
    Nothing to worry about if only one is up at a time. It would mean that the frequencies of adjacent oscillators affect each other if they are running at the same time ("injection pulling", to the point that they agree on a common frequency ("locking"). Consider the oscillator as an amplifier with a feedback loop. The feedback path plus phase shift lead to a fairly narrow frequency response around the oscillation frequency or harmonically related frequencies). Weird things can happen with the gain - while it is unity in average steady-state operation, the circuit can get highly sensitive to external interference that is (near)-correlated with the oscillator's own signal. Wikipedia: Perhaps the first to document these effects was Christiaan Huygens, the inventor of the pendulum clock, who was surprised to note that two pendulum clocks which normally would keep slightly different time nonetheless became perfectly synchronized when hung from a common beam
  24. 1 point
    D@n

    Noisy Output from FIR Compiler

    @Ahmed Alfadhel, You have a couple of options available to you: It's not clear, from your pictures above, whether or not the -40dB stop band was achieved. Some amount of noise is to be expected due to truncation errors, etc. Without seeing an estimated PSD, I can't tell. It may be that it's doing exactly what you required of it. -40dB is only so good. With more taps, you should be able to go deeper. How deep depends upon your requirements. How good do you want the signal to look? You may also need to provide more bits to both your signal and coefficient values in order to do better. You did prescale your coefficients so that, when rounded to integers, the taps were useful, right? Also, be aware, the filter will be specified for full scale. You'll want to measure it against a full scale input. Anything less will introduce additional truncation error. This is one of those reasons why the dynamic range (i.e. number of bits) of the input and output signals are so important. Enjoy! Dan
  25. 1 point
    Hi, For sw part I use Xilinx DMA driver (interface to VDMA IP core) and modified ADI AXI HDMI DRM driver for exposing frame buffer device to GUI sw (e.g. Qt). You can see driver bindings in above attached zyboz7-20.devicetree-1.zip (pl.dtsi). All video memory transfers to FPGA are managed by this two drivers.
  26. 1 point
    Hi @ahmedengr.bilal, Like I mentioned in the previous post there is no HDMI output from the Linux side, neither the embedded rootFS provided by petalinux nor the kernel configuration we give out is set to accommodate this feature. Regarding the missing media-ctl and v4l2-ctl, you have not activated the v4l-utils in the rootfs configuration of the petalinux. to do this you need to navigate to your petalinux project folder and run: petalinux-config -c rootfs Once the menu appears you need to go to Filesystem Packages->misc->v4l-utils and activate: v4l-utils, libv4l, media-ctl. Rebuild the whole project and it should be working now. -Ciprian
  27. 1 point
    xc6lx45

    FIR compiler Amplitude

    My first guess is that the tool needs to know the position of the decimal point of your number format. It's off by 20 bits (=> 1048576 => 120 dB). Fixed point knows only integers, so it's a matter of interpretation.
  28. 1 point
    Yep, seen that they were back online. Thanks, Jon
  29. 1 point
    jomoengineer

    Howdy from NorCal

    Thanks Jon. And thanks for the links. Cheers, Jon
  30. 1 point
    The example I posted would work for Linux or Mac with "common" tools installed. As to Windows... can't really help much there. git's not part of Python, it's used for managing code; you can achieve the same end result here by downloading the ZIP from https://github.com/bdlow/dlog-utils-portable/archive/master.zip and unzipping to a folder. Virtual environment support is a standard part of Python 3; you can skip that if you like but without virtual environments eventually your Python installation will end up like this: https://xkcd.com/1987/ Ah, of course, in Windows `activate` is a batch script not a shell script: https://www.techcoil.com/blog/how-to-create-a-python-3-virtual-environment-in-windows-10/
  31. 1 point
    attila

    Logic Analyzer Counter Function

    Hi @Lars Lindner You can perform a recording and see the pulses using quick measurements or measurements like this:
  32. 1 point
    For the Protocol / SPI-I2C /Spy mode you should specify the approximate (or highest) protocol frequency which will be used to filter transient glitches, like ringing on clock signal transition. The Errors you get indicate the signals are not correctly captured. - make sure to have proper grounding between the devices/circuits - use twisted wires (signal/ground) to reduce EMI - use logic analyzer and/or scope to verify the captured data / voltage levels at higher sample rate at least 10x the protocol frequency Like here in the Logic Analyzer you can see a case when the samples are noisy:
  33. 1 point
    @longboard, Yeah, that's really confusing isn't it? At issue is the fact that many of these chips are specified in Mega BITS not BYTES. So the 1Gib is mean to refer to a one gigabit memory, which is also a 128 megabyte memory. That's what the parentheses are trying to tell you. Where this becomes a real problem is that I've always learned that a MiB is a reference to a million bytes, 10^6 bytes, rather than a mega byte, or 2^20 bytes. The proper acronyms, IMHO, should be Gb, GB, Mb, and MB rather than GiB or MiB which are entirely misleading. As for the memory, listed as 16 Meg x 8 x 8, that's a reference to 8-banks of 16-mega words or memory, where each word is 8-bits wide. In other words, the memory has 16MB*8 or 128MB of storage. You could alternatively say it had 1Gb of memory, which would be the same thing, but this is often confused with 1GB of memory--hence the desire for the parentheses again. Dan
  34. 1 point
    Hi @Phil_D The gain switch is adjusted automatically based on the selected scope range. At 500mV/div (5Vpk2pk ~0.3mV resolution) or lower the high gain is used with and above this the low gain (50Vpk2pk w ~3mV resolution). In case you specify trigger level out of the screen (5Vpk2pk) or offset higher/lower than +/- 2.5V the low gain will be used for the trigger source channel. This will be noted on the screen with red warning text. The attenuation is a different thing. This option lets you specify the external attenuation or amplification on the signals which enter the scope inputs and the data is scaled accordingly. Like, if you use a 10x scope probe, the scope input will actually get 1/10th of the original signal, but specifying 10x attenuation the signal is scaled to show values on the probe. In this case the 500mV/div (5Vpk2pk) low/high gain limit moves up to 5V/div (50Vpk2pk) and the low gain up to 50V/div If you have an external 100x amplifier on the scope input you can specify 0.01x attenuation. With this you will have 5mV/div (50mVpk2pk ~0.003mV resolution) for high gain.
  35. 1 point
    Hi @askhunter, The top.vhd is already added to the project. If you are wanting this file to be underneath the design_1 then you should right click on the design_1 and select add sources. Then add the vhdl files you would like to add to the design. It might be easier to start with a fresh project. best regards, Jon
  36. 1 point
    jpeyron

    Nexys 2 - transistor part number

    Hi @CVu, Glad to hear that replacing the transistor fix the issue. Thank you for sharing what you did. best regards, Jon
  37. 1 point
    kwilber

    NEXYS 3 frequency meter

    The problem is likely in the .ucf file where you define pin information. The error message says device pin LL8 doesn't exist. If you post the contents of your ucf, we can probably figure it out.
  38. 1 point
    kwilber

    Pmod DA3 clocking

    You may not have to build your own. That becomes a design decision that only you can make based on the requirements/specifications your design must meet. If the performance you are getting out of the Digilent IP meets your requirements, there is no reason to roll your own. On the other hand, if you are not able to meet your requirements and you are running up against limitations of the IP, then either look for a more performant IP or consider designing purpose specific logic. According to your measurements, it takes 40 bits sent at a rate of 3.125 Mhz for each update of the DAC. That is at least 12.8 microseconds per update. Take the inverse of that and you have a maximum update rate of 78,125 updates/second. Is that sufficient for your design?
  39. 1 point
    jpeyron

    Pmod DA3 clocking

    Hi @Ahmed Alfadhel, In section 2 Interfacing with the Pmod on page 1 of the reference manual for the Pmod DA3 here it states the pmod should use spi mode 0. thank you, Jon
  40. 1 point
    D@n

    Conflicting Voltages in Bank Arty-A7

    @zygot, @Ahmed Alfadhel is not using a Basys3 board, and so this is really a bad example of attaching one question to another post. @Ahmed Alfadhel appears to be using an Artix-A7 board. In that case, the sys_clk is properly constrained, but he may well have some of the DDR3 I/O pins improperly constrained. These are the pins located on Bank 35. I think the problem in this case is that @Ahmed Alfadhel has improperly constrained in DDR DQS pins. For example, ddr3_dqs_[0] should be set to pin N2, not to A6. Compounding the problem is the way these pins are hidden in a "board definition file" rather than in the XDC file, making it likely to have conflicting pin definitions. @Ahmed Alfadhel, If you are following Digilent's instructions, you might want to double check that you have the appropriate board definition file. If you are trying this on your own, using only an XDC file, then you might find these instructions valuable. Also, I would recommend you not attach unrelated issues to old posts. Perhaps the Digilent staff might be kind enough to separate these two issues into separate forum posts--since they really are quite different. For example, the Basys3 board doesn't have the DDR3 memory which is the source of your pin-connection troubles. Dan
  41. 1 point
    kwilber

    Simple HDMI pass through with NexysVideo

    Unfortunately, I do not have a NexysVideo board available. I have run the simple hdmi pass thru on both zybo and arty boards. Have you tried using a resolution of 720p yet? I find it useful to start with the lower frequencies first. Most sources and monitors have no trouble working with that.
  42. 1 point
    Well that's a pretty horrible looking 5 MHz signal coming directly out of an MMCM. It does remind me of the characteristic response of a particular passive component to a pulse, from decades ago when I took my intro electronics course. What do you think? Remind you of anything? I didn't mention the idea of scope probe compensation. It sure doesn't look like something that even a cheapo compensated probe would present for a low frequency signal out of a functioning FPGA pin into a high impedance load. Past that there are a number of usual suspects... but something is fundamentally wrong with your test setup.
  43. 1 point
    You can get the SDK to add a few example projects for any device in the system. Open the system.mss and click on the OS (the default is the standalone but you may have chosen another one when you created your BSP). Scroll down to the uart_x that you run through the PL and click on the demonstration examples. There is a nice variety of demonstrations and you probably want to add them all. The SDK will build these for the uart you selected. This is one nice feature of the SDK. If you chose another OS, such as the RTOS I'm not sure if examples are available. You likely want to use the interrupt driven example as a basis for your design ( depending on how you designed your overall software control). Of course, there are a lot of ways to arrange your communication protocol so I hope that you've spent some time thinking about how it will work. The simpler the better. Understand that the purpose of the example code is to show you the basic requirements to implement a particular interface and not to solve your problems... that is they are there for you to pore over and understand how they work. I can't send you code because your application is unique to you. If your SDK OS has a hardware abstraction layer then you will likely need to find other sources for example code. I rarely need (or want) a full-up OS like Linux for embedded applications. [edit] I should have mentioned that since you have at least two FPGA boards ( and ony you know what else ) you have a system. The basic system definition and design approach should be the first thing to flesh out. This includes inter-board communication; for instance are the boards peer-peer or is there a hierarchy? You can always tweak the system design if the lower level considerations demand it once you start fleshing out the actual implementation. If you haven't given any thought to the system interactions and structure then you are in for a lot of unnecessary work as the project nears integration.
  44. 1 point
    jpeyron

    Vivado and SDSoC with purchase

    Hi @Sduru, Welcome to the Digilent Forums. The list that comes with Vivado currently does not come with Digilent's board files included. You will need to install the board files as @kwilber describes above. thank you, Jon
  45. 1 point
    kotra sharmila

    sdsoc_opencv error

    Hi , Thank you very much for this platform its showing video i/o demo and build perfectly i will try with my own project if i got any doubts i will ask you. Regards, K Sharmila
  46. 1 point
    jpeyron

    Custom Image Processing on Zybo-Z7 20

    Hi @Amin, I have not made a project like this. To get a Zybo-Z7-20 project working with the SD card: Make sure you are using the Digilent board files.Here is the installation tutorial for the board files. Your block design should be the just the Zynq processor with FCLK_CLK0 connected to the M_AXI GP0_ACLK as shown with the attached screen shot. Run block automation as default(board files) when the Digilent board files are being used. Then create a wrapper and generate a bitstream. Next export the hardware including the bitstream and launch SDK. In SDK you should be able to alter the main.c file attache above to work for your needs. If your goal is to use a standalone project i can assist with using the ZYNQ processor with the SD card. I would have to reach out to more experience engineers for assistance using HLS or non-prebuilt SDSoC project. If your project does not need to be standalone then I would suggest using either an embedded linux project like petalinux , a pre-built SDSoC project or the SDSoC reVISION platform. 1) Here is the Petalinux Support for Digilent Boards which has two version releases and a very detailed readme which should help you get the project going. 2) Here is the SDSoC Platforms which has a project completed for the Zybo-Z7-20. 3) Here is the SDSoC reVISION project for the Zybo-Z7-20. thank you, Jon
  47. 1 point
    attila

    external p/s for analog discovery 2

    Szia @GaborG Unfortunately Analog Discovery and Digital Discovery are not working with RaspberryPI.
  48. 1 point
    attila

    Math on FFT traces

    Hi @lab!fyi In the Network Analyzer extended option lets you use Wavegen channels at up to 20MHz and with external up to 50MHz. In the Spectrum Analyzer you can select frequency range up to 10MHz but with auto option lets you set Stop frequency up to 50MHz. Selecting the dB unit will let you specify custom reference, for dBm I think it should be 0.316V
  49. 1 point
    shahbaz

    How to read from SD card on ZYBO

    hi @jpeyron, I followed the guide at GitHub under Readme in PMODSD. can you please guide me step wise on how to start from block design and than going to SDK and running the demo. I have added the pmodsd and zynq PS IPs, after auto connection and running the generate bitstream I get following error. I need your guidance at this