Leaderboard


Popular Content

Showing content with the highest reputation since 11/02/18 in all areas

  1. 2 points
    Hello @Bryan_S, Here is a demo project for Cmod S6 from https://reference.digilentinc.com/reference/programmable-logic/cmod-s6/start. I looked into the source files and there is clk_gen_50MHz.vhd. You can see in the top.vhd file how the clk_gen_50MHz is instantiated and used. I don't know what is the clk16x in your code, but here are some source files for serial port serialport_v3.zip The sources are for Nexys4 DDR which has a 100 MHz system clock. But in your case, if you use the clk_gen_50MHz, you'll have a 50 MHz clock instead of 100 MHz, 9600 baud rate, as shown in the UART_RX_CTRL.vhd file. The same for UART_TX_CTRL.vhd. I don't know if you'll use the sources from above, but I hope it helps. Best regards, Ana-Maria Balas
  2. 2 points
    Hello @bitslip, Things are a little bit more complicated. Indeed, for changing the resolution you have to rewrite some registers. But you also need to make sure that the Video Trimming controller ip generates the required constants for you resolution. I wouldn't recommend to write all the needed registers from the control interface (it would be agonising) Instead I would go with the existent logic for changing the resolution, which is adding a new structure with all the register values. As an example, you can check the OV5640.H file. I much simple and quicker solution would be to use our video scaller ip. This ip was written in HLS and it was used in the fmc pcam adapter demo for re-scalling the video at a 640x480 resolution. You can check the design in here: https://reference.digilentinc.com/learn/programmable-logic/tutorials/zedboard-fmc-pcam-adapter-demo/start Best Regards, Bogdan Vanca
  3. 2 points
    Hi @attila Thank you again for all the support you've provided me for the past weeks. I am now capable of receiving more than 409 characters using the Wrapper I created base from your example. It uses the Record acquisition mode and I set the buffer size to 3 million for now. I'll increase it when the need arises. I used 1 UART controller and branched out its Tx pin to 2 DIO pins of the AD2 (DIO #0 & 1). I transmitted 500 characters: (If Record mode is not the acquisition mode, the received result will be blank) For DIO # 0, it received: with a length of: For DIO #1, it received: with a length of: I could not have done it without your guidance, thank you again and more power to you and Digilent Best regards, Lesiastas
  4. 2 points
    Hi @Blake, I was struggling with the same problem. In Adam's project is mistake which result is an FMC-HDMI module is not recognizable by other devices. The reason for that is not sending EDID at all. The cause of this situation is wrong initialized EDID map. In Adams example EDID is initialized by: but the correct way is: the body of iic_write2 is from LK example: By the way, in LucasKandle example initialization is done in same way as in Adam's example so is the reason why it not worked in your case. I hope it will helps. If you want I will post my working code for a ZedBoard with FMC-HDMI when I clean it because at the moment is kind of messy.
  5. 2 points
    kwilber

    Pmod DA3 clocking

    It seems to me the AXI Quad SPI block is sending address + data. Looking at the .xci file again, I see C_SPI_MEM_ADDR_BITS set to 24 bits. So 24 bits of address and 16 bits of data would yield 40 bits.
  6. 2 points
    Hi @neocsc, Here is a verified Nexys Video HDMI project updated from Vivado 2016.4 to Vivado 2017.4. You should be able to find the updated project in the proj folder . Here is a GitHub project done in HDL using the clocking wizard, DVI2RGB and RGB2DVI IP Cores for another FPGA. Here is a unverified Nexys Video Vivado 2017.4 HDMI pass through project made from the linked Github project. In the next few days I should have the bandwidth to verify this project. thank you, Jon
  7. 2 points
    The warning you pasted is benign and simply means there are no ILAs present in your design. The real issue could be your clock. You should review the datasheet for the dvi2rgb.Table 1 in section 5 specifies RefClk is supposed to be 200Mhz. Also, your constraint should follow the recommendation in section 6.1 for a 720p design. Finally, @elodg gives some great troubleshooting information in this thread.
  8. 2 points
    Hi @akhilahmed, In the mentioned video tutorial, the leds are controlled using "xgpio.h" library but the application is standalone. If you want to use a linux based application you have to use linux drivers for controlling. In the current Petalinux build, which is used in SDSoC platform, UIO driver is the best approach. Steps: 1. Vivado project generation: - Extract .dsa archive from /path_to_sdsoc_platform/zybo_z7_20/hw/zybo_z7_20.dsa - Launch Vivado - In Tcl Console: cd /path_to_extracted_dsa/prj - In Tcl Console: source rebuild.tcl - In this point you should have the vivado project which is the hardware component of SDSoC platform. Open Block Design. Change to Address Editor Tab. Here you will find the address for axi_gpio_led IP: 0x4122_0000 2. Petalinux UIO driver: - Launch SDx - Import zybo-z7-20 SDSoC platform - Create a new SDx linux based project using a sample application (e.g. array_zero_copy) - Build the project - Copy the files from /Dubug/sd_card to SD card - Plug the SD card in Zybo Z7. Make sure that the JP5 is set in SD position. Turn on the baord - Use your favorite serial terminal to interact with the board (115200, 8 data bits, 2 stop bits, none parity) - cd to /sys/class/uio - if you run ls you will get something like: uio0 uio1 uio2 uio3 uio4 uio5 - Now you have to iterate through all these directories and to search for the above mentioned axi_gpio_led address: 0x4122_0000 - For example: cat uio0/maps/map0/addr will output: 0x41220000, which means that the axi_gpio_led can be accessed using linux uio driver through uio0 device. - Code: #include <stdio.h> #include <stdlib.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <stdint.h> #include <unistd.h> #include <fcntl.h> #define UIO_MEM_SIZE 65536 #define UIO_LED_PATH "/dev/uio0" void UioWrite32(uint8_t *uioMem, unsigned int offset, uint32_t data) { *((uint32_t*) (uioMem+offset)) = data; } uint32_t UioRead32(uint8_t *uioMem, unsigned int offset) { return *((uint32_t*) (uioMem+offset)); } void led_count_down(uint8_t *ledMem) { uint8_t count = 0xF; uint8_t index = 0; for (index = 0; index < 5; index++) { UioWrite32(ledMem, 0, count); count = count >> 1; sleep(1); } } int main() { // Set Leds as output int led_fd = open(UIO_LED_PATH, O_RDWR); uint8_t *ledMem = (uint8_t *) mmap( 0, UIO_MEM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, led_fd, (off_t)0); UioWrite32(ledMem, 4, 0x0); // Set all leds as output while(1) { // Start led count-down led_count_down(ledMem); } return 0; } - Build the project and copy the content of Debug/sd_card on SD sd_card - Power on the board and connect to it using a serial terminal - run the following commands: mount mmcblk0p1 /mnt cd /mnt ./project_name.elf - Result: A countdown should be displayed on leds.
  9. 2 points
    JColvin

    Arty A7 flash chip

    Hi @D@n, I believe the new part that is used in the Arty A7 boards (and other A7 boards) is now a Spansion S25FL128SAGMF100; based on old schematics, I believe this was added in Rev D of the Arty A7 (dated August 2017), though I do not know when that particular Rev was then released (or if it even was released) to the public. I confirmed that the Arty S7 also uses this part and I wouldn't be surprised if most of our other Artix 7 based boards use it now as well. I've requested that the chip name and images are updated in any appropriate tutorials and requested that the pdf version of the reference manual (updated wiki) is updated as well. Thanks, JColvin
  10. 1 point
    hamster

    Bitstream problem with Basys 3

    Seen the problem. You need to define both o1[0] and o1[1] in your constraints, as o1 is a vector of two signals. At the moment you are trying to attach both signals to the same pin, hence the error. Ditto for o2, o3 and o4.
  11. 1 point
    JColvin

    PMODs - Spec 1.2.0

    Hi @andresb, I apologize for the delay. The best way to determine if they are complaint with specification 1.2.0 is by looking at their respect Resource Center (such as the Pmod AD1). On the right-hand side under Electrical, you will see the Specification version that the Pmod is currently compliant with. The Pmod Interface Specification 1.2.0 is available directly here: https://reference.digilentinc.com/_media/reference/pmod/pmod-interface-specification-1_2_0.pdf. Let me know if you have any questions about this. Thanks, JColvin
  12. 1 point
    JColvin

    Can Arty Z7 handle 4k60p hdmi?

    Hi @greengun, No, the transceiver pins on the Arty A7 FPGA (a XC7A35TICSG324-1L FPGA) are no broken out. As per Xilinx UG475 (page 41), the HR I/O bank 16 is only partially bonded out, but as per the Arty A7 schematic, the HR I/O pins on bank 16 are not used. Thanks, JColvin
  13. 1 point
    zygot

    Offline Installer

    I've been thinking that we've not been talking about the same things for a while now. In order to use your CMOD you need Vivado to create the configuration bitstreams. The last time I downloaded Vivado it was a file north of 40 GB. Yes, Gigabytes. Xilinx also supplies much smaller installers that require an internet connection in order to install Vivado on you PC. Digilent supplies tools for standalone configuration of the FPGA using bitstream that you create. Also, their tools can supplement Vivado to allow Vivado Hardware Manager to use the Digilent configuration facilities. Digilent also has software development tools and APIs for compiling your own software applications using various interfaces found on their FPGA boards. These files are all reasonably small. Trying to do FPGA development in a room or building without any internet access is going to be difficult without full support from the IT people maintaining your network and computing resources.
  14. 1 point
    Hi @P. Fiery The 'replace all' can be undone easily with Ctrl+Z. The 'all files' would require undo in each file, so I have added confirmation for this. Thank you again for your feedback.
  15. 1 point
    Hi @jfranz-argo, @kharoonian, and @Franky32, I apologize for the delay. I have sent each of you a PM about this. Thanks, JColvin P.S. to other readers, be sure not have Digilent boards attached when you are reprogramming other FTDI devices. A long list of users will tell you it's an easy mistake to accidentally select the wrong device.
  16. 1 point
    @ManserDimor Here's a general rule of thumb. Differential traces, whether laid out as differential or not must be length matched as best as possible. High speed bussed signals are usually length matched but normally this isn't nearly as critical as differential signalling; and this is usually done with a maximum data rate in mind. Everything else is usually assigned to the auto-router. Hand tuning traces is expensive and time consuming and usually there are a limited number that can be optimised with high ball count FPGA footprints. Usually, the focus is on external memory like DDR. If you need IO pins that are length matched then choose a board that makes it clear how well this was done. If the board vendor doesn't mention length matching then it was unlikely to have been done. Most of Digilent's boards with "high-speed" "differential" PMODS mention length matching in the reference manual. Some vendors offer a trace routing report of lengths for certain connectors. If differential signal traces are routed as true differential pairs then using them as single-ended signals might be problematic from a cross-coupling standpoint, especially if you don't take this into account. The only 3.3V differential IOSTANDARD supported by Series7 devices is TMDS and this is best done when the termination is as close to the receiver as possible. All of this does not necessarily mean that you can't design around a board's shortcomings to achieve some level of performance using a logic that the board wasn't designed for. This is one reason why all (most???) Series7 devices offer input delay management and in some cases output delay management features. There are boards from a few vendors with length matched GPIO on connectors are usually designed for high-speed. 2.56x2.56 mm connectors aren't that. Not many board vendors are going to go to the expense of designing a high performance board that they intend to sell at a cheap price. Final comment. If you are going to connect an external board or device to your FPGA board connector then you must assume the digital logic designer role required to do so.
  17. 1 point
    You can start with the following tutorials: http://www.ni.com/tutorial/14871/en/ https://reference.digilentinc.com/learn/programmable-logic/tutorials/program_fpgas_through_multisim/start
  18. 1 point
    Glenn

    USB Power

    Upon further reflection, I bet my switched cables do not have all the USB lines coming through. RPi only needs power via it's microUSB input.
  19. 1 point
    Cristian.Fatu

    tera term for two pmods

    Hello, The PmodAD2 communicates over I2C protocol with the main board on which the Pmod is plugged. The PmodAD2 has no UART / USB capabilities. It is the main board that communicates - using its USB-UART capability - with the PC. Connecting the board using a USB cable creates a COM port on the PC. When you open a TeraTerm (or other terminal) connection, you select the COM port. Therefore a possible approach could be to have 2 PmodAD2 connected to a single main board, in different Pmod connectors. The SDK application should gather the AD2 data (measurements), format a text message containing these measurements, and then sending the text message over UART to the PC, to be later visualized in a terminal. What application are you running on the FPGA board ? You should modify it to read the other Pmod as well.
  20. 1 point
    Actually, I'm not sure what Diglent's policy is about questions that aren't specific to Xilinx or Digilent products. The various FPGA vendors are certainly competitors but I have a hard time seeing non-commercial customers as 'competitors' regardless of which vendors' products they are using. I would agree that, even though some of the people who respond to questions posted to Digilent's Forum have recent experience with a variety of FPGA vendor's devices and tools, posting questions to a website dedicated to Xilinx based products when your question is specific to Intel is a good way to get bad information and probably unwise. Also, and this hasn't happened yet, I suspect that having a lot of questions about non-Xilinx devices and tools would be confusing to a lot of readers and make the experience for many of them of reading posts to Digilent's forum less useful. Intel has a community forum as does Xilinx. Neither is, in my experience, as helpful as Digilent's most of the time. Intel is, well not Altera, and even Altera's community support wasn't that great. Digilent's Forum is a great place to ask about Digilent products and Xilinx tools. Even restricted to that it' must be hard for people to find answers that have already been posted because a a lot of questions keep getting repeated. I do heartily suggest that it would be more appropriate to seek out answers to questions like saif1's at forums where people who hang out there are very knowledgeable about the tools and devices for the platform that you are working on. There also must be vendor agnostic forums out there somewhere dealing with FPGA development tools and devices. My last word is that an awful lot of questions would be answered if the poster only took the time to read through the vendors' literature. If there's any practice that's bad form it's wasting other peoples time because you can't be bothered or don't have the time to read readily available literature. Everyone's time is as important to them as yours is to you.
  21. 1 point
    Tim S.

    Pmod OLEDrgb with Zybo Z7

    Just to make sure my explanation is thorough. The above has a typo. It should read: Linux has a case-sensitive file system whereas Windows has a case-insensitive file system.
  22. 1 point
    jpeyron

    GPS Pmod

    Hi @cepwin, I'm glad you we able to get to the bottom of the issue. Thank you for sharing what happened. cheers, Jon
  23. 1 point
    D@n

    Custom IP

    @PoojaN, You're not the first person who has asked this. If you just want to blink an LED, then I'd recommend a different approach that avoids all the pain with AXI in the first place. (You don't need AXI ...) If you want to start interacting with AXI cores, then you'll need to learn AXI. Sadly, this isn't as simple as it sounds. Xilinx picked the AXI bus to connect all their components with. This may have something to do with their ARM integration, since if I understand correctly AXI is an ARM creation AXI is not a simple bus to work with. Unlike Wishbone, it has five channels associated with it each of which can stall. These are the read address channel, the write address channel, the write data channel, the read response channel and the write response channel. One bus failure, and your device will lock up. In my experience, using an ARM+FPGA chip, lockups could only be fixed by cycling the power leaving you ever wondering what had caused the problem. Part of the problem is that the AXI standard has no way of recovering following a dropped response other than a total system reset. As I've implemented Wishbone, you can just adjust one wire (the cycle line--but that's another story) and start over. You can even use a timeout to clear the bus if a peripheral has not responded within an expected period of time. Not so with AXI. AXI is so difficult to work with that not even Xilinx could get it right. (See the links above) When I first discovered these bugs, I wondered that no one had found them before. For example, two writes in a row would lose a response and lock up the bus if ever there was the slightest amount of backpressure on the return channel. (Something Wishbone doesn't have to deal with, since there's no way to stall a Wishbone acknowledgement) It would seem as though very few individuals ever simulated their cores with backpressure (i.e. either BREADY or RREADY signals low), and so they never noticed these bugs. Similarly, some configurations of the interconnect might trigger the bugs while others wouldn't. Imagine adjusting the glue that holds your design together only to find your design starts failing. What would you blame? The interconnect, right? When in fact it was their demonstration core logic at fault that everyone was copying. I've now fielded several questions in the last several months alone on Xilinx's forums from users who've struggled with these bugs. If you do searches, you'll discover that folks have been struggling with these sorts of problems ever since Xilinx started using AXI. In one recent post, a software engineer posted that his FPGA engineer had left, leaving them with a "working" design. He then adjusted the software within the design and the whole design now froze any time he tried to write to their special IP core twice in succession. I'm hoping Xilinx will fix these bugs (soon). I haven't checked their latest release since reporting them, but I do expect them to fix the bugs in the near future. It's not just Xilinx either. I'm currently verifying the (ASIC) soft core of a major (unnamed) vendor. Much to my surprise, despite a team of highly paid professional engineers working to produce this amazingly complex core , and despite the fact that they created a simplified subset of the AXI interface standard to work with ... they still didn't get the AXI interface right. Realizing how difficult this was, I tried to simplify the task by creating a couple of cores. One showing how to build a bug-free AXI-lite slave (link above), another showing how to build a bug-free AXI slave (link above again). I also shared an AXI bridge implementation that, if you place your core downstream of it, you'd be guaranteed to meet the AXI protocol--even if it slowed you down a touch. I also shared the code for verifying that an AXI-lite component works--you are free to try it out yourself to know if your core still works after changing it. If you like using Wishbone, I've posted an AXI-lite to Wishbone bridge, or even a Wishbone to AXI bridge in case you want to access your DRAM memory. I also think you'll find that all of these cores, save perhaps the bus fault isolator core, will have better performance than Xilinx's logic ever had. Whether or not you use these options (or give up on AXI as I've tried to do) ... well, that's up to you. Forget what the sales brochures tell you, we aren't playing with legos here. There's more required to hook things together then just plugging them into each other--especially if you want something that works reliably when you are done. Just want something simple? Learn Verilog or VHDL. At least then you'll be the one responsible for your own bugs. Dan
  24. 1 point
    Hi, I just have opened a new terminal and launch minicom through the new terminal which works the same way as SDK terminal but I have to close the SDK terminal before connecting to minicom. Thanks @D@n and @jpeyron
  25. 1 point
    attila

    Scope custom math channel limitations?

    Hi @P. Fiery You could use the View/Logging/Script to create an up-sampled reference channel like this: var rg = [] var v2 = 0 Scope.Channel1.data.forEach(function(v1){ rg.push((v1+v2)/2) rg.push(v1) v2 = v1 }) // upsampling by 2 doubles the sample rate Scope.Ref1.setData(rg, 2*Scope.Time.Rate.value)
  26. 1 point
    jpeyron

    Pmod da3 reconstruction filter

    Hi @lwew96, We have not used a reconstruction filter. I did find a paper that discusses a reconstruction filter with the AD5541 here. Hopefully one of the more experienced community members will have some input for you as well. best regards, Jon
  27. 1 point
    SmashedTransistors

    BASYS3 and Axoloti

    Thanks @OvidiuD, I'll take one step after another and the forums are quite a good source of knowledge. So far, I plan to start with very basic schemes in order to understand how Vivado works. Then I will work on communicating with the Axoloti through SPI. Best regards
  28. 1 point
    D@n

    Noisy Output from FIR Compiler

    @Ahmed Alfadhel, You have a couple of options available to you: It's not clear, from your pictures above, whether or not the -40dB stop band was achieved. Some amount of noise is to be expected due to truncation errors, etc. Without seeing an estimated PSD, I can't tell. It may be that it's doing exactly what you required of it. -40dB is only so good. With more taps, you should be able to go deeper. How deep depends upon your requirements. How good do you want the signal to look? You may also need to provide more bits to both your signal and coefficient values in order to do better. You did prescale your coefficients so that, when rounded to integers, the taps were useful, right? Also, be aware, the filter will be specified for full scale. You'll want to measure it against a full scale input. Anything less will introduce additional truncation error. This is one of those reasons why the dynamic range (i.e. number of bits) of the input and output signals are so important. Enjoy! Dan
  29. 1 point
    Hi @ahmedengr.bilal, Like I mentioned in the previous post there is no HDMI output from the Linux side, neither the embedded rootFS provided by petalinux nor the kernel configuration we give out is set to accommodate this feature. Regarding the missing media-ctl and v4l2-ctl, you have not activated the v4l-utils in the rootfs configuration of the petalinux. to do this you need to navigate to your petalinux project folder and run: petalinux-config -c rootfs Once the menu appears you need to go to Filesystem Packages->misc->v4l-utils and activate: v4l-utils, libv4l, media-ctl. Rebuild the whole project and it should be working now. -Ciprian
  30. 1 point
    jpeyron

    ZedBoard and PmodCAN

    Hi @YellowYoung, Welcome to the Digilent forums! The PmodCAN facilitates CAN communication to another device through the PL.The PmodCAN uses SPI communication to communicate between the host board and itself. It would not be able to connect to the CAN on the PS. To use the CAN bus on the PS you would need to use the MIO Pmod JE1 as discussed in the user guide for the Zedboard here in section 2.9.2 Digilent Pmod Compatible Headers (2x6). The user guide states the bank that the MIO pins are connected to a 3.3V bank so you would need to make a level shifting circuit for CAN communication to work since CAN uses voltage level as part of its communication. If all you need to do is communicate data from the Zedboard using CAN communication. Then you can send data from the PS to the PL and then send that data through the PmodCAN. Here is an Avnet forum thread that discusses sending data from the PS to the PL. Here is a Xilinx forum thread that initially discusses how they accomplished sending data from the PS to the PL. best regards, Jon
  31. 1 point
    Yep, seen that they were back online. Thanks, Jon
  32. 1 point
    jomoengineer

    Howdy from NorCal

    Thanks Jon. And thanks for the links. Cheers, Jon
  33. 1 point
    For the Protocol / SPI-I2C /Spy mode you should specify the approximate (or highest) protocol frequency which will be used to filter transient glitches, like ringing on clock signal transition. The Errors you get indicate the signals are not correctly captured. - make sure to have proper grounding between the devices/circuits - use twisted wires (signal/ground) to reduce EMI - use logic analyzer and/or scope to verify the captured data / voltage levels at higher sample rate at least 10x the protocol frequency Like here in the Logic Analyzer you can see a case when the samples are noisy:
  34. 1 point
    Hi @Phil_D The gain switch is adjusted automatically based on the selected scope range. At 500mV/div (5Vpk2pk ~0.3mV resolution) or lower the high gain is used with and above this the low gain (50Vpk2pk w ~3mV resolution). In case you specify trigger level out of the screen (5Vpk2pk) or offset higher/lower than +/- 2.5V the low gain will be used for the trigger source channel. This will be noted on the screen with red warning text. The attenuation is a different thing. This option lets you specify the external attenuation or amplification on the signals which enter the scope inputs and the data is scaled accordingly. Like, if you use a 10x scope probe, the scope input will actually get 1/10th of the original signal, but specifying 10x attenuation the signal is scaled to show values on the probe. In this case the 500mV/div (5Vpk2pk) low/high gain limit moves up to 5V/div (50Vpk2pk) and the low gain up to 50V/div If you have an external 100x amplifier on the scope input you can specify 0.01x attenuation. With this you will have 5mV/div (50mVpk2pk ~0.003mV resolution) for high gain.
  35. 1 point
    Hi @Phil_D Try calling to load the workspace and to run script one after the other. subprocess.Popen(['C:/Program Files/Digilent/WaveForms3/WaveForms.exe', 'phase_noise_237.dwf3work']) subprocess.Popen(['C:/Program Files/Digilent/WaveForms3/WaveForms.exe', '-runscript'])
  36. 1 point
    jpeyron

    Nexys 2 - transistor part number

    Hi @CVu, Glad to hear that replacing the transistor fix the issue. Thank you for sharing what you did. best regards, Jon
  37. 1 point
    You might have a look at Trenz Electronics "Zynqberry". I think they managed to get one of the cameras to work (not sure). What I do remember is that the board has some custom resistor circuitry to additional pins for the required low-speed signaling.
  38. 1 point
    jpeyron

    Pmod DA3 clocking

    Hi @Ahmed Alfadhel, In section 2 Interfacing with the Pmod on page 1 of the reference manual for the Pmod DA3 here it states the pmod should use spi mode 0. thank you, Jon
  39. 1 point
    Nianyu Jiang

    PmodIA Extension

    https://www.researchgate.net/publication/236037769_A_four-electrode_low_frequency_impedance_spectroscopy_measurement_system_using_the_AD5933_measurement_chipt this is the paper I am talking about. Thanks for the further explaination, I start understanding the working principle and trying to combine everything. Will go back to you once I have more question. Nianyu Jiang
  40. 1 point
    jpeyron

    Vivado and SDSoC with purchase

    Hi @Sduru, Welcome to the Digilent Forums. The list that comes with Vivado currently does not come with Digilent's board files included. You will need to install the board files as @kwilber describes above. thank you, Jon
  41. 1 point
    kotra sharmila

    sdsoc_opencv error

    Hi , Thank you very much for this platform its showing video i/o demo and build perfectly i will try with my own project if i got any doubts i will ask you. Regards, K Sharmila
  42. 1 point
    Hi @bklopp, Here is a completed Nexys Video UART interrupt project in Vivado 2018.2 that uses interrupts in microblaze. thank you, Jon
  43. 1 point
    Hi @Amin, I know our content team is planning on updating our Petalinux projects. We currently do not have an ETA for this. Here is the Petalinux Support for Digilent Boards table that shows what Petalinux projects we have for our development boards and has a link to them as well. To use our most recent Petalinux release for the Zybo-Z7-20 I would suggest to download Vivado/SDK and Petalinux 2017.4. I would also suggest reading the Petalinux projects detailed readme as well. thank you, Jon
  44. 1 point
    Hi @Sami Malik, On Monday Ii will make a project and share it on this thread that I believe you are trying to do. thank you, Jon
  45. 1 point
    Hi @sungsik, Those symbols show that the pins are differentially paired. The nomenclature of the pins also describe positive and negative. cheers, Jon
  46. 1 point
    They are to get a negative supply out of the positive digital output from the uC. Since the output of the uC is between 0 ... 3.3 V max. VREF1V5 is the node determining at which point the IC10A will switch from positive output to negative and vice versa. The opamp will always attempt to keep the difference between inverting and non-inverting inputs zero. VREF3V3 is a pullup of the inverting input, if the inverting input is pulled below 1.5V, the IC10A output will become positive in order to bring the inverting input back to 1.5V. On the other hand, when the inverting input is above 1.5V, the output of the IC10A will become negative to bring the inverting input back to 1.5V. I guess VREF3V0 could have been a higher voltage as well. But VREF1V5 should be as close to the center of the uC supply as possible in order to achieve symmetric output and the best resolution thereof. I'm also guessing they were not willing to rely on a stable supply voltage from the linear 3.3V regulator and probably already required a precision 3V reference for other purposes.
  47. 1 point
    Hello @Blake, I've created for you an image that test your FMC-HDMI adapter. It does a basic data transfer between the HDMI output of the ZedBoard and both of the adapter hdmi inputs. Prior to this it also uses all the I2C lines. Please check the .rar attached file. In order to recreate the test, please fallow the fallowing steps: 1.Make sure that you have everything in place, check the bellow instructions and the first image. Connect USB cable from PC to ZED USB PROG port (J17) Connect USB cable from PC to ZED UART port (J14) Connect FMC-HDMI board to FMC connector J1 (of ZED) Connect Power cable to J20 (of ZED) Set mode jumpers for JTAG programming (all to GND) Set J18 (of ZED) jumpers to 3V3 or 2V5. I'v tested both variants. Create a loop between HDMI-OUT J9(ZED) and FMC-HDMI IN1 of the adapter. Turn ZED board on 2. Open Vivado (I used Vivado 2017.4). Open Vivado, and click on Open Hardware Manager within the Welcome Page. After this click on Auto-Connect. You should see the Zed into the upper left panel.Check the image bellow. 3. Add Configuration Memory Device Right click on xc7z020_1 and choose "Add Configuration Memory Device". Check image bellow. 4. Choose the right memory device for ZED. Please choose "s25fl256s-3.3v-qspi-x1-dual_stacked" from the list. Click to program the device. Check images bellow. 5.Program the device with the files attached to this message. For "Configuration file" you choose BOOT.bin. For "Zynq Fsbl" you choose fsbl.elf. Click OK. 6. Wait until it gets programmed. After finish, you click OK. 7. Prepare the board for testing. Open a serial terminal, termite, putty, teraterm etc. Find the COM port and choose 115200 for baud rate. Set jumpers for QSPI programming (MIO5 on 3V3 and SIG, the others on 3V3 and GND). Power OFF the Board. Power ON the Board. The image should boot. See the image bellow. 8.Do the actually test. Make sure that the HDMI-OUT (ZED) is connected to HDMI-IN1 of the FMC-HDMI adapter. Press ENTER. Wait for the test to finalize. Make sure that the HDMI-OUT (ZED) is connected to HDMI-IN2 of the FMC-HDMI adapter. Make sure that your adapter is not loose. Press ENTER. Wait for the test to finalize. 9.Check the results, and give me an update . image.rar
  48. 1 point
    attila

    Math on FFT traces

    Hi @lab!fyi In the Network Analyzer extended option lets you use Wavegen channels at up to 20MHz and with external up to 50MHz. In the Spectrum Analyzer you can select frequency range up to 10MHz but with auto option lets you set Stop frequency up to 50MHz. Selecting the dB unit will let you specify custom reference, for dBm I think it should be 0.316V
  49. 1 point
    shahbaz

    How to read from SD card on ZYBO

    hi @jpeyron, I followed the guide at GitHub under Readme in PMODSD. can you please guide me step wise on how to start from block design and than going to SDK and running the demo. I have added the pmodsd and zynq PS IPs, after auto connection and running the generate bitstream I get following error. I need your guidance at this
  50. 1 point
    OK thanks. Yes, updating that tutorial would save a lot of time and confusion. I later noticed that Xilinx's page for 2017.2 has a bit more description relating to free WebPACK than the page for 2017.3, though it's still not clear how to invoke the free aspect. Further confusion is added by the Xilinx page you arrive at from Vivado's License Manager, as that page omits the Activation-based licenses, and the licenses it does show include a Free one for pre-2015, as though you can't license 2016 and later for free. Evidently that doesn't mean you can't use 2016 and later, it means that no license is required, and you don't need to be using the License Manager at all!