Leaderboard


Popular Content

Showing content with the highest reputation since 09/29/16 in all areas

  1. 6 points
    attila

    WaveForms beta download

    3.11.8 digilent.waveforms_beta_v3.11.8_64bit.exe digilent.waveforms_beta_v3.11.8.dmg digilent.waveforms_beta_3.11.8_amd64.deb digilent.waveforms_beta_3.11.8.x86_64.rpm Added: - horizontal cursors for Scope/FFT, Spectrum and Impedance Analyzer - cursor delta as decade for logarithmic scales - Scope: - simple Math channel operations: RMS, ATan - LockIn amplifier as Math channel - XYZ 3D graph, for 64bit Windows Fixed: - Scope/Audio/Tempo option 3.11.7 digilent.waveforms_beta_v3.11.7_64bit.exe digilent.waveforms_beta_v3.11.7.dmg digilent.waveforms_beta_3.11.7_amd64.deb digilent.waveforms_beta_3.11.7.x86_64.rpm minor fixes and improvements 3.11.6 digilent.waveforms_beta_v3.11.6_64bit.exe digilent.waveforms_beta_v3.11.6.dmg digilent.waveforms_beta_3.11.6_amd64.deb digilent.waveforms_beta_3.11.6.x86_64.rpm Added: - Protocol - UART Spy - Max Lines option: log limit to prevent application slowdown - Line Wrap option - tooltips for UI controls listing Script access path - application and script Font options - dark theme support for Script 3.11.5 digilent.waveforms_beta_v3.11.5_64bit.exe Added: - Script open/save text file - application argument: -script myscript.txt/js Fixed: - warnings at low record rates 3.11.4 digilent.waveforms_beta_v3.11.4_64bit.exe Added: - Scope: - set/reset zero offset in each channel option - precision option for measurements Fixed: - Script: access to traces and channels from Instrument.Export - unit conversions V to Ṽ, A to à - I2S 32 bit data 3.11.3 digilent.waveforms_beta_v3.11.3_64bit.exe digilent.waveforms_beta_3.11.3_amd64.deb digilent.waveforms_beta_3.11.3.x86_64.rpm Fixes 3.11.2 digilent.waveforms_beta_v3.11.2_64bit.exe digilent.waveforms_beta_3.11.2_amd64.deb digilent.waveforms_beta_3.11.2.x86_64.rpm Added: - Spectrum, Network and Impedance Analyzer store time data when this view is open Fixed: - runscript argument - loading of docked views geometry 3.11.1 digilent.waveforms_beta_v3.11.1_64bit.exe digilent.waveforms_beta_3.11.1_amd64.deb digilent.waveforms_beta_3.11.1.x86_64.rpm Added: - Scope: out of range warning in measurements - Protocol/UART: - support up to 32bit/word - TX/RX format: text, binary, decimal, hex - Wheel Direction option - Logic Analyzer: option to swap previous/next events - Spectrum Analyzer: allowing higher number of BINs for CZT 3.10.7 digilent.waveforms_beta_v3.10.7_64bit.exe Added: - Spectrum: logarithmic magnitude scale for voltage units - Protocol: datetime stamp for SPI/I2C Spy Fixes 3.10.6 digilent.waveforms_beta_v3.10.6_64bit.exe Added: - Scope - access to digital channels from custom mathematic channels - digital measurements view Fixes 3.10.5 digilent.waveforms_beta_v3.10.5_64bit.exe digilent.waveforms_beta_3.10.5_amd64.deb digilent.waveforms_beta_3.10.5.x86_64.rpm Added: - Power Supplies for AD2: tracking, slider, min/max - Logic Analyzer: Measurements - Impedance Analyze: DC mode compensation - SDK VB wrapper, C# wrapper updated Fixed: - EExplorer Wavegen AM/FM index precision for sine 3.10.4 digilent.waveforms_beta_v3.10.4_64bit.exe Fixed: - decimal resolution in Export, Data and Event views 3.10.3 digilent.waveforms_beta_v3.10.3_64bit.exe digilent.waveforms_beta_v3.10.3.dmg digilent.waveforms_beta_3.10.3_amd64.deb digilent.waveforms_beta_3.10.3.x86_64.rpm Added: - UART format option (binary, decimal...) - SDK I2C without clock stretching - SDK examples: Digital_I2c_PmodAcl.py, Digital_I2c_PmodGyro.py - Spectrum Analyzer THDN measurement, THDp and THDNp in percentage units - Impedance Analyzer: - constant current, voltage, custom script for amplitude and resistance control - Option to disable mouse drag and wheel operations on plots - Impedance/Network Analyzer: averaging time - Wavegen: extended frequency option Changed: - special values (none, off) moved to end of the preset list 3.10.2 digilent.waveforms_beta_v3.10.2_64bit.exe digilent.waveforms_beta_v3.10.2_32bit.exe digilent.waveforms_beta_v3.10.2.dmg digilent.waveforms_beta_v3.10.2_mavericks.dmg digilent.waveforms_beta_3.10.2_amd64.deb digilent.waveforms_beta_3.10.2_i386.deb digilent.waveforms_beta_3.10.2.x86_64.rpm digilent.waveforms_beta_3.10.2.i686.rpm Added: - Impedance Analyzer - voltage, current and custom plots - edit Meter list - Resistance mode for Meter, Frequency DC option - step mode in Time view - Netowrk Analyzer - step mode in Time and FFT views - amplitude table and custom function Fixed: - Help minor fix - Protocol SPI and I2C Sensor rate improvement - StaticIO button lock 3.8.22 digilent.waveforms_beta_v3.8.22_64bit.exe digilent.waveforms_beta_v3.8.22_32bit.exe Added: - Impedance differential setup, W1-C1P-DUT-C1N-C2-R-GND 3.8.21 digilent.waveforms_beta_v3.8.21_64bit.exe digilent.waveforms_beta_v3.8.21_32bit.exe digilent.waveforms_beta_v3.8.21.dmg digilent.waveforms_beta_3.8.21_amd64.deb digilent.waveforms_beta_3.8.21_i386.deb digilent.waveforms_beta_3.8.21.x86_64.rpm digilent.waveforms_beta_3.8.21.i686.rpm Added: - data property for impedance/network channels. - Impedance.Resistor.reference property - instruments accessible without index in Script tool like Scope. Fixes... 3.8.20 digilent.waveforms_beta_v3.8.20_64bit.exe Added: - Logger function access to other channels value, average, min, max - Script access to Logger channel set data property, getting average, minimum, maximum Fixed: - Logger Show/Maximum - Script Protocol.I2C.Clear() function 3.8.18 digilent.waveforms_beta_v3.8.18_64bit.exe digilent.waveforms_beta_v3.8.18_32bit.exe digilent.waveforms_beta_v3.8.18.dmg Added: - Network Analyzer - logarithmic scale and percentage unit - spectrum measurements: Carrier, THD+N, THD, HD# - FFT view - Averaging option 3.8.17 digilent.waveforms_beta_v3.8.17_64bit.exe digilent.waveforms_beta_v3.8.17_32bit.exe digilent.waveforms_beta_v3.8.17.dmg digilent.waveforms_beta_3.8.17_amd64.deb digilent.waveforms_beta_3.8.17_i386.deb digilent.waveforms_beta_3.8.17.x86_64.rpm digilent.waveforms_beta_3.8.17.i686.rpm Added: - Scope - persistence support for smooth curve and min/max sampling - custom math - current value in custom math function, can be used for averaging - initialization code for integration purposes - examples - unit presets for: ohm, degree, VAC, AAC - Spectrum - Import/Export samples for Traces - trace information option - Range option to adjust all the scope input ranges - Network and Spectrum - Script support for set magnitude property - Step size and steps per decade settings - Network Analyzer - custom plots: THD, HD2, HD3 - Protocol - I2C/Spy glitch filter based on frequency setting - Device options - On Close: Run (keep running), Stop, Shutdown - USB Power: Always ON or Stop with AUX for AD2 - USB Limit: USB current limitation AD1,2 - Audio Output: AD1, 2 - WaveForms SDK FDwfParamSet/Get, FDwfDeviceParamSet/Get - DwfParamOnClose, DwfParamUsbPower, DwfParamLedBrightness, DwfParamAudioOut, DwfParamUsbLimit - Notes toolbar show/hide option - on/off icon for toggle buttons: supply enable, network analyzer reference... - show entire capture button Changed: - renewed mouse wheel, drag and key (left,right,up,down) operation on plots and axis Fixed: - EExplorer output glitch during first device connection - NI VI crash when initializing without device connected - Scope XY plot 3.8.11 digilent.waveforms_v3.8.11_64bit.exe digilent.waveforms_v3.8.11_32bit.exe digilent.waveforms_v3.8.11.dmg digilent.waveforms_3.8.11_amd64.deb digilent.waveforms_3.8.11_i386.deb digilent.waveforms_3.8.11.x86_64.rpm digilent.waveforms_3.8.11.i686.rpm Added: - Digital Discovery: - LED brightness option - Logic Analyzer - ASCII format for: Bus, SPI, I2C, I2S - Format option for I2C - Logic Analyzer and Patterns - Line Color option - Protocol - Format option for SPI and I2C: Hexadecimal, Decimal, Binary, ASCII - Plot Width option in application settings Changed: - drawing quality improvement for thicker lines - color dialog buttons renamed to Close and Reset 3.8.9 digilent.waveforms_v3.8.9_64bit.exe digilent.waveforms_v3.8.9_32bit.exe digilent.waveforms_v3.8.9.dmg digilent.waveforms_3.8.9_amd64.deb digilent.waveforms_3.8.9_i386.deb digilent.waveforms_3.8.9.x86_64.rpm digilent.waveforms_3.8.9.i686.rpm Added: - WF/Settings/Options: Locale with System or English US regional option, export and import options - SDK: FDwfParamSet/Get function - Scope: measurement resolution Fixed: - minor issues 3.8.8 digilent.waveforms_v3.8.8_64bit.exe digilent.waveforms_v3.8.8_32bit.exe digilent.waveforms_v3.8.8.dmg Added: - WF SDK: - examples updated to be Python v3 compatible - FDwfAnalogImpedance functions for impedance/network analysis - Protocol: CAN receiver filter by ID - Impedance: Export information about amplitude and offset Fixed: - WF SDK: FDwfDigitalSpi functions read MISO/RX 3.8.7 digilent.waveforms_v3.8.7_64bit.exe Fixed: - Scope: save/load of coefficients for custom Math channel filter 3.8.6 digilent.waveforms_v3.8.6_64bit.exe digilent.waveforms_3.8.6_amd64.deb Added: - Export: Wavegen and Supplies information added to Scope, Spectrum, Impedance, Network export comments Fixed: - Script Tool.exec timeout - CAN high polarity option in Protocol tool and WF SDK 3.8.5 digilent.waveforms_v3.8.5_64bit.exe Added - Script functions: getSaveFile, getOpenFile, getDirectory - Scope: multiple scales, zero offset - Notes view - Export options: notes, header as comment - Help tab: floating/undock option, find with highlight Fixed: - Impedance Analyzer frequency scale in export 3.7.22 digilent.waveforms_v3.7.22_64bit.exe digilent.waveforms_v3.7.22_32bit.exe digilent.waveforms_v3.7.22.dmg digilent.waveforms_3.7.22_amd64.deb digilent.waveforms_3.7.22_i386.deb digilent.waveforms_3.7.22.x86_64.rpm digilent.waveforms_3.7.22.i686.rpm Added - Scope/Logic View/Logging picture format - Script: - Export function for instruments - access to Protocol/UART/RX using Receiver, Receive and ReceiveArray functions, SendArray Fixed - Scope edge trigger position for all devices, when only one or two samples are above the threshold - other minor fixes 3.7.21 digilent.waveforms_v3.7.21_64bit.exe digilent.waveforms_v3.7.21_32bit.exe digilent.waveforms_3.7.21_amd64.deb digilent.waveforms_3.7.21_i386.deb digilent.waveforms_3.7.21.x86_64.rpm digilent.waveforms_3.7.21.i686.rpm Added - Wavegen dynamic configuration, adjustments without restarting the generator - SDK support for CAN bus TX, RX - more detail in Spectrum, Network and Impedance Analyzer export comments - import data orientation option Fixed - Network Analyzer Meter export and copy - Data Logger quick measurements - other fixes and optimizations 3.7.19 digilent.waveforms_v3.7.19-2_64bit.exe digilent.waveforms_v3.7.19-2_32bit.exe digilent.waveforms_v3.7.19.dmg digilent.waveforms_3.7.19-2_amd64.deb digilent.waveforms_3.7.19-2_i386.deb digilent.waveforms_3.7.19-2.x86_64.rpm digilent.waveforms_3.7.19-2.i686.rpm Added: - Logic I2S Show channel option - SDK functions for UART, SPI, I2C master and UART receiver Changed: - OS-X rollback to FTDI driver 1.2.2 Fixed: - Impedance Analyzer: save/load of views positions - other fixes and optimizations 3.7.15 digilent.waveforms_v3.7.15_64bit.exe digilent.waveforms_v3.7.15_32bit.exe Added: - Logic Analyzer: position (Nth word) option for SPI trigger on value - Impedance: Nyquist plot; settle time, minimum periods options - Wavegen, Network/Impedance Analyzer: external Amplification option - Tabbed/Docking window switching from main window Changed: - lower frequency limit for Scope, AWG, Network, Impedance Fixed: - 10ns delay in Logic Analyzer Sync and Protocol interface - Sound Card device CPU usage 3.7.14 digilent.waveforms_v3.7.14_64bit.exe digilent.waveforms_v3.7.14_32bit.exe Added: - Protocol I2C ACK/NAK last read byte option Changed: - Windows XP, Vista compatible FTDI driver in 32bit installer 3.7.13 digilent.waveforms_v3.7.13_64bit.exe digilent.waveforms_v3.7.13_32bit.exe digilent.waveforms_v3.7.13.dmg digilent.waveforms_3.7.13_amd64.deb digilent.waveforms_3.7.13_i386.deb digilent.waveforms_3.7.13.x86_64.rpm digilent.waveforms_3.7.13.i686.rpm Added: - Sound Card device of the computer can be used as Scope and Wavegen - Scope sampling clock for Electronics Explorer - Logic Analyzer data compression for recording, for Electronics Explorer - Scope and Wavegen support for 4th device configuration of Analog Discovery 1 & 2 - Scope Logging Repeat option - Scope Audio view: Stereo, Tempo options - MacOS option for application menu 3.7.12-2 digilent.waveforms_v3.7.12-2_64bit.exe Fixed: - Analog Discovery 2 configuration file descriptions 3.7.12 digilent.waveforms_v3.7.12_64bit.exe digilent.waveforms_v3.7.12_32bit.exe Added: - Scope sampling clock under time options, for Analog Discovery 1 & 2. The trigger IOs can be used as sample clock with delay and edge options. - Logic Analyzer data compression for recording, for Analog Discovery 1 & 2 Changed: - Windows installer: - embedded prerequisites: Windows Installer, Visual C++ Redistributable 9 32/64bit, 12 64bit - split installer for 32bit and 64bit WF applications, but the included WF runtime for custom applications support both architectures Fixed: - Logic Analyzer UART frame error threshold 3.7.10 digilent.waveforms_v3.7.10.exe Added: - Spectrum Analyzer Markers Fixed: - SDK Electronics Explorer enumeration - Scope Math channel unit presets 3.7.9 digilent.waveforms_v3.7.9.exe Fixing: - Logic Analyzer Event view double click for signals 3.7.8 digilent.waveforms_v3.7.8.exe Changed: - Impedance Analyzer: - view names - solid line for magnitude Fixed: - Impedance Analyzer admittance |Y| value 3.7.7 digilent.waveforms_v3.7.7.exe Added: - Scope and Logic trigger detector for trigger source Fixed: - warning message when connecting to EExplorer - Patterns trigger on Digital Discovery.
  2. 3 points
    hearos

    FTDI chip not recognized anymore

    I have not had any activity listed when trying the "dmesg" so I went to buy a new cable, and that actually was it. Thank you for the hint!
  3. 3 points
    xc6lx45

    FTDI chip not recognized anymore

    I think it's Linux... Try the "dmesg" command immediately after plugging or unplugging. It should show some related events. The obvious, try with a different computer and a different cable. Especially cables fail often.
  4. 3 points
    Hi, reading between the lines of your post, you're just "stepping up" one level in FPGA design. I don't do long answers but here's my pick on the "important stuff" - Before, take one step back from the timing report and fix asynchronous inputs and outputs (e.g. LEDs and switches). Throw in a bunch of extra registers, or even "false-path" them. The problem (assuming this "beginner mistake") is that the design tries to sample them at the high clock rate. Which creates a near-impossible problem. Don't move further before this is understood, fixed and verified. - speaking of "verified": Read the detailed timing analysis and understand it. It'll take a few working hours to make sense of it but this is where a large part of "serious" design work happens. - Once the obvious problems are fixed, I need to understand what is the so-called "critical path" in the design and improve it. For a feedforward-style design (no feedback loops) this can be systematically done by inserting delay registers. The output is generated e.g. one clock cycle later but the design is able to run at a higher clock so overall performance improves. - Don't worry about floorplanning yet (if ever) - this comes in when the "automatic" intelligence of the tools fails. But, they are very good. - Do not optimize on a P&R result that fails timing catastrophically (as in your example - there are almost 2000 paths that fail). It can lead into a "rabbit's hole" where you optimize non-critical paths (which is usually a bad idea for long-term maintenance) - You may adjust your coding style based on the observations, e.g. throw in extra registers where they will "probably" make sense (even if those paths don't show up in the timing analysis, the extra registers allow the tools to essentially disregard them in optimization to focus on what is important) - There are a few tricks like forcing redundant registers to remain separate. Example, I have a dozen identical blocks that run on a common, fast 32-bit system clock and are critical to timing. Step 1, I sample the clock into a 32-bit register at each block's input to relax timing, and step 2) I declare these register as DONT_TOUCH because the tools would otherwise notice they are logically equivalent and try to use one shared instance. This as an example. - For BRAMs and DSP blocks, check the documentation where extra registers are needed (that get absorbed into the BRAM or DSP using a dedicated hardware register). This is the only way to reach the device's specified memory or DSP performance. - Read the warnings. Many relate to timing, e.g. when the design forces a BRAM or DSP to bypass a hardware register. - Finally, 260 MHz on Artix is already much harder than 130 MHz (very generally speaking). Usually feasible but you need to pay attention to what you're doing and design for it (e.g. a Microblaze with the wrong settings will most likely not make it through timing). - You might also have a look at the options ("strategy") but don't expect any miracles on a bad design. Ooops, this almost qualifies as "long" answer ...
  5. 3 points
    zygot

    A UART Based Debugger Tool

    Here's a utility for debugging and testing your code in hardware and uses any IO pin to send an ASCII representation of any signal through a hardware UART interface. If you don't have a UART on you FPGA board there are TTL USB UART breakout boards and cables that allow any spare IO pin to become a UART interface. This code is functionally the same as one recently released by Hamster but developed independently for the Fast Data Interface project. I recommend comparing the different coding styles. I decided to release this as a separate project as there are likely more people interested in this one that the other. This project contains test bench code. UartDebuggerR3.zip
  6. 3 points
    Ciprian

    Digital Twin

    Hi @Kris Persyn, It depends on how you manage your resources, driving immersive visuals on a HDMI display can be done in multiple ways at different resolutions, some are PL taxing others are DDR taxing; you could generate entire frame buffers in PL or PS or you could find a optimal algorithm to change just the previous frame or you could allocate a high number of frame buffers and then run them in a loop. It also depends on how math lab synthesizes the IP you will need to add to your design. If you design your project properly and don't aim for a resolution higher more 720p( I'm being conservative, we managed to drive the HDMI at 1080p with processing filters without a problem) I think it should be enough for what you want to do, resource wise. My suggestion, download and install Vivado, download and install the board files, create and implement your project look at the resource consumption and then buy a board. - Ciprian
  7. 3 points
    In your constraint file, the ddc pins have lowercase "ddc_scl_io" and "ddc_sda_io". Your block design has the port in uppercase "DDC". The case must match. Try editing your constraint file to have "DDC_scl_io" and "DDC_sda_io".
  8. 3 points
    jpeyron

    pmod wifi

    Hi @harika, I believe the HTML web page error is related to the materials on the SD card. 1) Please attach a screen shot of the contents of the Sd card you are using. 2) Please follow the YouTube video here from about 6 minutes and 28 seconds on for how to set up the HTTP server project. Make sure to update the login an password for the router/modem you are using. thank you, Jon
  9. 3 points
    @thobie, the bare-metal purchase option for the Zybo was done to enable a lower price point for those who do not require the accessories. For the rest of our customers, adding the Accessory Kit is recommended during the purchase process. You are not the first and the last to complain about version compatibility. It is economically unfeasible for us to update all support projects, IP and support packages provided for free four times per year for each Vivado version. Instead we made a commitment to consider the last Vivado release in each year stable and do a once-a-year update cycle. In that regard, 2017.4 is the version we are upgrading projects to. There is a question whether OOB designs should be updated at all, or kept at the version which generated the binary image shipped with the board. The board presets are not versioned for Vivado (no version-specific releases in our git repo), because these should be forward-compatible with Vivado versions. The critical warning itself related to CK-to-DQS delays being negative appears starting with 2017.4. The negative values are due to CK trace being shorter than any of the four DQS traces. In the early days of Zynq board design negative values where listed as sub-optimal, but not erroneous. Tree topology instead of fly-by was also among the routing recommendations for DDR3 layouts. So the Zybo was designed with this sub-optimal layout due to space constraints. During Write Leveling calibration, 0 is used as an initial value instead of the negative preset delays. After calibration, if the skew is still too low, the clock is inverted. See ug585 pg 316 for more details. All Zybos shipped to customers are functionally tested and pass the DDR3 calibration process. Xilinx recommendations changed in the mean time, both in terms of routing topology and delay values. A trace of this can be found here: https://www.xilinx.com/support/answers/53039.html. The > 0ns requirement was introduced to be in line with non-Zynq MIG-based designs, where negative delays were never permitted. Since these delays are board-dependent, we would need to re-design the board to make the delay positive. This is impossible with the current form-factor. Another option would be modifying the board preset file and forcing a zero value instead of the actual delay. The tools seem to be using zero anyway for calibration. This will have to be thoroughly verified first.
  10. 3 points
    Hello, I've posted the next part in my FPGA graphics series using the Arty + VGA Pmod or Basys 3. It shows you how to make use of double buffering to animate sprites using simple Verilog. https://timetoexplore.net/blog/arty-fpga-vga-verilog-03 Feedback very welcome, Will PS. I'll add the source to GitHub shortly.
  11. 3 points
    An FPGA can be a useful "swiss army knife", but all the nice features aren't easily accessible. Enter "LabToy": A batteries-included collection of utilities, just double-click and go. As the name implies, this isn't meant to compete against "real" test equipment. The main selling point is like a pocket knife - this fits into a shirt pocket and the power tools don't. And speaking of "selling points", it's free to use. So what do we have here: - Digital data: Shows the input state of all pins - Analog data: Readings from the two ADCs, up to about 700 ksps sustained (XADC "simultaneous sampling" mode, phase-accurate between channels) - Streaming data logger: Both analog and digital data can be written to a .vcd file, to be shown in gtkwave. There is no limit to the capture length. - Analog signal generator: 8 fully independent channels, sine, square wave, the usual suspects. Well, the DACs won't win any audiophile awards, but they are usable. - "Programmable" digital LED mode: Configurable pulse width to suppress short glitches, or edge detect with a built-in pulse generator to highlight them. - Analog LED mode: Shows the input value of the ADC in real time Some screenshots: 1k sine / cosine from DAC jumpered to ADC (in gtkwave) The digital signal is the generator's sync output that can be recorded as a digital input. Realtime display of the inputs. With pocket knives in mind ("this button will unlock the large blade, allowing it to be manually returned to its folded position") I decided to keep the screen uncluttered and put descriptions into tooltips. The large displays are the average voltage readings from the ADC. The smaller ones show the digital inputs in groups of four. Generator controls (frequency, minimum voltage, maximum voltage, phase). The voltage scaling is a bit unusual (typically there is "AC magnitude" and "DC offset") but I chose this approach because it shows clearly the limitations of the 0..3.3V output range. Most people will probably leave all this at the default values for a full-scale signal. Data capture Example: The output in gtkwave after I touched a jumper cable to the digital inputs on the DIL connector. +++ DO NOT USE THE +5V OUTPUT P24 FOR THIS KIND OF TEST +++ (3.3 V is available on the PMOD connector, bottom row) The red "undefined" marks flag the first input in an 8-bit group. In this example, they aren't too meaningful, but they can alert me to the fact that no data events have been observed yet. LED control The two numbers give the number of consecutive 1 or 0 samples (at 125 MHz) before a signal change is propagated to the LED. E.g. put 125 million there and it'll take one second after changing the input state for the LED to light / go dark. Those can be used interactively to study an unknown signal. "Level": no further processing ("level" mode and 1 / 1 sample counts is equivalent to directly connecting the LED to the physical input) "Edge" mode generates a brief pulse on signal changes, the LED is dark otherwise. "Invert" flips the input right next to the pin (0 becomes 1, black becomes white and man gets himself killed on the next zebra crossing -DA). How to get it: The file is attached: labToy0v1_beta.exe The installer unpacks a single .exe. Happy hacking! Requirements: Windows 64 bit (!) .NET 4.5 FTDI libraries CMOD A7 35 T (not 15 T). Warnings: Direct access to digital IO pins is an inherently dangerous activity. "PROVIDED WITHOUT WARRANTY OF ANY KIND" means Just That. And beware of the +5V pin. PS: If you try it, kindly let me know whether it works, or what goes wrong.
  12. 3 points
    attila

    Using script with Spectrum on AD2

    Hi @tomtektest, @abzza With WaveForms Script THD and other measurement logging and plotting can be automated, like this: function doTHD(){ var rgTHD = [] var rgFreq = [] for(var idx = 1; idx <= 100; idx++){ Wavegen1.Channel1.Simple.Frequency.value = 1000*idx Wavegen1.run() // start AWG wait(0.01) // settle time for the external circuit, expressed in seconds Spectrum1.Frequency.Stop.value = 20*Wavegen1.Channel1.Simple.Frequency.value // adjust analyzer stop frequency Spectrum1.single() // start acquisition if(!Spectrum1.wait()){ // wait to finish return; } rgFreq.push(Spectrum1.Trace1.measureFreq("FF")) rgTHD.push(Spectrum1.Trace1.measure("THD")) } Wavegen1.stop() print(rgFreq, rgTHD) // print data for copy paste // draw in plot1, View / Add plot plot1.X.Units.text = "Hz" plot1.Y1.Units.text = "dBc" plot1.X.data = rgFreq plot1.Y1.data = rgTHD } doTHD();
  13. 3 points
    zygot

    Rants about FPGA tool chain(s)

    @D@n , Here's a secret; I'm whispering because this is just between you and me: At places where they do a lot of quality FPGA development work no one ever brings up a GUI for anything. All of the toolchain invocation is done using Perl and TCL/TKL. Shhhh. Don't tell anyone....
  14. 3 points
    A few reasons are... a - The introduction of logic hazards can cause glitches : https://en.wikipedia.org/wiki/Hazard_(logic) b - Routing of clocks is very complex - It is hard to ensure that the same clock edge appears all over the FPGA at almost exactly the same time. Sometimes this is achieved with 'slight of hand' (e.g. using a on-chip PLL to advance phase of the clock, so that by the time it reaches the edge of the chip is in back phase with the original signal). Low-skew paths also exist, but are restricted to small areas of the FPGA, and the clock has to be connected to the correct pin to be placed and routed correctly. c - FPGAs and their tools are designed to behave predictably under the "synchronous digital design" paradigm (something like https://hps.hs-regensburg.de/scm39115/homepage/education/courses/red/2_SynchronousDigitalCircuitDesignRules.pdf). If you work outside the paradigm you will be fighting against the tools and their assumptions. d - There is almost nothing that you are unable to code in an FPGA friendly way, but there are infinitely many ways to write FPGA-hostile code. If you want your FPGA to place nice with you, you have to play nice with it. So you can either add an RC filter to debounce you switch, or you can sample it using a reliable clock.
  15. 3 points
    D@n

    Just for fun: Frequency Resolution challenge

    Hello everybody! Since I was sharing this image with others, I thought I'd share it here at Digilent as well. The attached image shows the frequency response of several FFT windows, including the well-known rectangle and Hanning windows. The blue window is one I've put together, but haven't shared the FPGA source code used to implement it. I challenge anyone to do better. Oh, and one other comment ... all but the Hanning window can be used in an invertible FFT process. Dan
  16. 3 points
    Tempest2k8

    OpenScope Mechanical STL Files

    Printed out on the Form Labs at my local TechShop.
  17. 3 points
    jpeyron

    Cmod A7 35T GPIO demo Error

    Hi @coloradosensors, I just generated bitstream on this project in Vivado 2015.4. You need to right click on the clocking wizard and remove it. Then under project manager click on ip catalog and re-add the clocking wizard with default settings. This will fix your issues with using an older version of Vivado for this project. cheers, Jon
  18. 3 points
    D@n

    Lots of fun UART testing code

    Hello Digilent Community! I just finished putting the finishing touches on a UART demonstration project that you can find here. The project was originally intended to share a C++ class that could work with Verilator to prove that anyone's UART implementation was working. However, after I got into it, I realized the project had a lot of value that others might appreciate. As an example, consider this post by @martin16. Had he used any of the testing mechanisms listed below, he might have known which side of the RS232 port he was working with was at fault. The core contains a complete implementation of both a transmit and receive UART encoder/decoder. These can be easily taken from my project and placed within your own. (Subject, of course, to the limits of the GPL v3) The core also contains a (fairly) generic FIFO implementation. For those wondering how to implement a FIFO, you may find this valuable as well. For those who would rather interact with a serial port over a bus, such as the wishbone bus, there are two approaches within the project that can be used to hook it up to a wishbone bus. One can be used within a larger wishbone slave module, the second as a standalone module. Both are Wishbone B4 compliant, and both use the pipeline mode--allowing you to read/write multiple values on consecutive clocks from/to the controller. Of course, this only really makes sense when using the FIFO. Those might be valuable enough on their own, but you can probably find without too much additional work other implementations of the above. Therefore this project includes some even more valuable files: It includes a series of test programs/configurations that can be used to determine if the hardware on your board is working properly. If you are like me, you've struggled every time you've tried to get a serial port working on a new board. Should you connect your output to the TX or to the RX line? Do you have the UART set up properly, at the right baud rate? Can you handle more than just single values at once? How fast can you transmit/receive? To help you answer these questions, the project file contains the following test configurations: Hello World: You know, that old fashioned hello world program? I would recommend trying this program on your board after you can blink an LED at your favorite rate, or equivalently after you know that your clock works. This particular project is so simple that it depends upon only the clock input and the UART transmit output. Getting this program running on your board will demonstrate that you understand your clock, and that you can modify your I/O constraint file properly, and that you know how to connect a terminal program to your board in order to observe the results. Line Test: Once you've got a hello world program running, so that you know the output UART pin works, then it is time to test the input UART pin. This is the purpose of the line test testing program. It works by reading a line of data (either until a newline or 80--characters), and then dumping that line to the output. (Don't forget to turn off hardware flow control, and be aware of the differences between a new line and a carriage return!) SpeechFifo: Finally, there's a program that can be used to test the FIFO capabilities found within the wishbone UART peripheral. This program uses the FIFO capability to make certain the transmitter stays fully loaded for over a thousand characters of output bytes. (No, this isn't computer speech generation, but rather a computer dumping a Abraham Lincoln's Gettysburg Address across the UART port.) Each of these configurations has a corresponding Verilator simulation file associated with it, allowing you to simulate the functionality within them as part of Verilator. The project includes, like I mentioned above, a C++ class that can be used to determine if your own UART is transmitting correctly under a Verilator simuation. This class can also be used generate UART signaling in order to test if your RTL can receive it properly. (See the line test C++ harness discussed below for an example of this.) As complements to each of the testing configurations above, the project contains C++ files to drive each of those within a Verilator context. Some unique features include: The Line Test C++ test harness automatically generates a linetest.vcd file that can be used together with GTKwave to study how the core works. Further, it can be run in either an interactive or an automated mode. The Speech Test C++ test harness can be used in an automated mode, or with the -i switch in a more interactive mode. In this latter mode, the speech test program generates a speechtrace.vcd file that can be used with GTK wave to understand how the UART transmitter, FIFO, the wishbone bus decoder, or even the test harness itself. I hope you find these as valuable as I have. Please feel free to post any questions or comments you might have about this project below. Dan
  19. 3 points
    LariSan

    Birth of an OpenScope!

    We got a series of photos of the OpenScope going through the manufacturing line. Unfortunately, Kickstarter didn't allow me to load all of them onto the update.
  20. 3 points
    D@n

    Nexys 4 DDR

    @gnicholls, Wow, what a good and thorough question. You've hit the nail on the head, and you are asking something a lot of users are asking. So in answer, may I reply, Welcome to the wonderful world of FPGA design! DDR memory is hard. I mean, really hard. I tried for about two solid months to get a DDR3 memory up and running, and eventually moved on because it was taking too much time to do. You can still find the project here, though--and I still hope to return to it--eventually. Xilinx has written a variety of App notes describing how they've gone about creating their reference solution. For 7-series devices, you can find their note here--but it just doesn't tell you much. I've found the most useful information in their note from a couple generations back, found here for a Virtex-5. Bottom line: it's *really* hard--most people only use the reference solution, and then make the reference solution work for their design. I love the examples found at fpga4fun.com. They tend to work through many of the basic I/Os that FPGAs need to work with, and how to build controllers for each of them. Another useful website is Asic-World--it's just not one I've ever gotten into. Xilinx has tried to make your problem easier with their platform studio and now its Vivado replacement--allowing you to connect via point and click various different Xilinx components together to make one of many (fairly) pre-canned designs. Many of the Digilent based "tutorials" or "examples" are of this type. I personally find them wanting, for many reasons: They are "too easy"--offering you no insight for how they are accomplished internally. They are so much of a black box that you cannot examine what they did or how they did it in order to modify it, debug it, or even learn from it. It can be difficult to integrate your own work with their components. They are all focused on how to use someone else's components, but offer little in the way of teaching you how to build your own. In the end, they leave you stuck with Xilinx solutions. Any components you create/develop will only ever work with Xilinx. This leaves you forever wedded to the Xilinx platform, or forced to relearn all you have learned. Verilog (and <gasp> even VHDL) is a better language than that--capable of doing a lot more. And if that's not enough, your design that works with one version of Vivado may well break when the next one comes out because ... they changed something. (This is an ongoing problem, and a thorn in Digilent's side--suggestions are always welcome.) I have personally been trying to work to create somewhat of a solution to your problem, but I'll admit my own designs are perhaps far from the professor's materials that you are looking for. You can find many of my Verilog designs on github here. A recent design I've put together for both beginners and more experienced types alike can be found here. It contains examples of how to create a serial port, both transmitter and receiver, together with some top level designs that use such a port. As the task of figuring out which pin is which on any board is fairly common--even among experienced users, these offer examples you can work with to make sure you have your serial port working. My efforts have gone so far as to even build my own CPU, flash controller(s), SD-card controller, GPS controller, real-time clock, 7-segment controller, FFT, VGA controller, etc. I mean, why when you buy a board would you only learn to work with some of it, right? You can find a fairly complete design here, using a CMod-S6, that places a CPU onto the S6 with a minimal multi-tasking "operating system". I'm also working on a more complicated design for the Arty here--this one uses the Xilinx generated MIG DDR3 SDRAM, such as you have on your Nexys 4 DDR. This design is currently somewhat on hold, as I am trying to update the CPU within it to a more mainstream CPU that will even support the C-library. (Today's success: I managed to get newlib to compile for it! This is after updating the assembler, linker, GCC compiler backend, etc.) If you are a hard-core VHDL type, Xess.com has put together a fascinating library of VHDL routines to demo how to use their boards. To my knowledge though, the tutorial information within their libraries is ... a bit harder to follow than the simple point and click designs Xilinx peddles. One of the things I've noticed about many (most, all?) of the more complicated FPGA designs I've come across is that they all depend upon some form of internal bus by which things can be connected. Once you get past learning about how to build the simple peripherals fpga4fun wishes to teach you, you're next step is really to learn about that bus structure. Why? If for no other reason than memories seem to be best accessed via a bus, so anything using a DDR type of memory tends to send its requests over a bus. This can easily become a bottleneck to your design, but ... it sort of comes with the territory. You can build other memories and distribute them throughout your FPGA, but the amount of block RAM memory you will get within any FPGA tends to be ... never enough. Hence you are often stuck with the external memory chip(s). Xilinx uses the AXI bus protocol. You can find the specification for it here. I haven't found any good tutorials on how to use it, but there's a way you can get Vivado to generate a sample AXI-lite design that you can interface with. (I can google it if you are interested--I just don't have it at my fingertips.) I've personally used the Wishbone Bus protocol, version B4, pipelined mode. Many others use version B3. I find that I can transfer data 3x faster using B4. To get from the Wishbone Bus to a DDR memory, controlled via Xilinx's Memory Interface Generated AXI controller, I built a wishbone-AXI bridge. Others of these also exist. There's an open source package manger out there called fusesoc which was designed to facilitate composing solutions from many different FPGA components together. In particular, the OpenRISC team has put a lot of work into making sure their CPU's, peripherals, and board designs can be built using this package manager. (These tend to connect to each other via the wishbone B3 standard.) If you dig into this, you can probably find many, many examples of working peripherals for various boards--although that community does tend to focus more on the Altera boards than the Xilinx boards, and Verilog more than VHDL. So ... when I build a new design, how do I do it? For every board of Digilent's that I have bought, I start with the reference page, look up the schematic to see how the components are connected, and then google the part numbers on the schematic. Those will contain the instructions you need to access the various chips on your board. They are usually where things pick up next after you leave the canned tutorials and examples. I hope I haven't overwhelmed you, but really ... where you go next is up to you. What would you like to do? Dan P.S.: My favorite description of RTL design for those who know nothing about FPGA's is, "Infuriatingly complex in its simplicity." Everything you do will be simple--like the clock divider. But too many of these very "simple" components can become so complex that it very quickly gets under your skin.
  21. 3 points
    hamster

    Welcome!

    My name is Mike, and I've developed a bit of an obsession with FPGAs. You might be able to find some project ideas or inspiration on my WIki at http://hamsterworks.co.nz/mediawiki/index.php/FPGA_Projects I'm always happy to talk FPGAs, so feel free to drop me an email sometime
  22. 2 points
    Thinking of which... actually I do have a plain-Verilog FIFO around from an old design. It's not a showroom piece but I think it did work as expected (whatever that is...) For 131072 elements you'd set ADDRBITS to 17 and DATABITS to 18 for 18 bit width. module FIFO(i_clk, i_reset, i_push, i_pushData, i_pop, o_popAck, o_popData, o_empty, o_full, o_error, o_nItems, o_nFree); parameter DATABITS = -1; parameter ADDRBITS = -1; localparam ADDR_ZERO = {{(ADDRBITS){1'b0}}}; localparam ADDR_ONE = {{(ADDRBITS-1){1'b0}}, 1'b1}; localparam DATA_X = {{(DATABITS){1'bx}}}; input wire i_clk; input wire i_push; input wire i_reset; input wire [DATABITS-1:0] i_pushData; input wire i_pop; output reg o_popAck = 1'b0; output wire [DATABITS-1:0] o_popData; output reg o_error = 1'b0; output wire [31:0] o_nItems; output wire [31:0] o_nFree; output wire o_empty; output wire o_full; reg popAckB = 1'b0; reg [DATABITS-1:0] mem[((1 << ADDRBITS)-1):0]; reg [ADDRBITS-1:0] pushPtr = ADDR_ZERO; reg [ADDRBITS-1:0] popPtr = ADDR_ZERO; reg [DATABITS-1:0] readReg = DATA_X; reg [DATABITS-1:0] readRegB = DATA_X; wire [ADDRBITS-1:0] nextPushPtr = i_push ? pushPtr + ADDR_ONE : pushPtr; wire [ADDRBITS-1:0] nextPopPtr = i_pop ? popPtr + ADDR_ONE : popPtr; assign o_popData = o_popAck ? readReg : DATA_X; // === items counter === // note: needs extra bit (e.g. 4 slots may hold [0, 1, 2, 3, 4] elements) reg [ADDRBITS:0] nItems; assign o_nItems = {{{31-ADDRBITS-1}{1'b0}}, nItems}; assign o_nFree = (1 << ADDRBITS) - nItems; localparam NITEMS_ONE = {{(ADDRBITS){1'b0}}, 1'b1}; assign o_empty = nItems == 0; assign o_full = nItems == {1'b1, {{ADDRBITS}{1'b0}}}; always @(posedge i_clk) begin // === preliminary assignments === readRegB <= DATA_X; popAckB <= 1'b0; case ({i_push, i_pop}) 2'b10: nItems <= nItems + NITEMS_ONE; 2'b01: nItems <= nItems - NITEMS_ONE; default: begin end endcase o_error <= (i_push && ~i_pop && o_full) || (i_pop && o_empty); // === output register (delay 1) === o_popAck <= popAckB; readReg <= readRegB; pushPtr <= nextPushPtr; popPtr <= nextPopPtr; if (i_push) mem[pushPtr] <= i_pushData; if (i_pop) begin readRegB <= mem[popPtr]; popAckB <= 1'b1; end if (i_reset) begin pushPtr <= ADDR_ZERO; popPtr <= ADDR_ZERO; o_error <= 1'b0; o_popAck <= 1'b0; popAckB <= 1'b0; readReg <= DATA_X; readRegB <= DATA_X; nItems <= 0; end end endmodule
  23. 2 points
    SeanS

    Genesys 2 DDR Constraints

    Hi JColvin, I am definitely not using ISE. I think JPeyron had it correctly. I didn't have my board.Repopaths variable set and so the project wasn't finding the board files. Once I set this variable as suggested, the pin mapping and IO types were auto populated as expected. Kudos, Sean
  24. 2 points
    Hi @Blake, I was struggling with the same problem. In Adam's project is mistake which result is an FMC-HDMI module is not recognizable by other devices. The reason for that is not sending EDID at all. The cause of this situation is wrong initialized EDID map. In Adams example EDID is initialized by: but the correct way is: the body of iic_write2 is from LK example: By the way, in LucasKandle example initialization is done in same way as in Adam's example so is the reason why it not worked in your case. I hope it will helps. If you want I will post my working code for a ZedBoard with FMC-HDMI when I clean it because at the moment is kind of messy.
  25. 2 points
    kwilber

    Pmod DA3 Pinout

    That is one of the conventions commonly used to indicate an Active Low signal. So in this case, you pull Chip Select low when you want to access the chip. After you have toggled in all the data bits on the DIN line, you pull LDAC low. The Pmod DA3 reference manual has a link to the D/A chip's datasheet. That is the best first place to look for information on the device's function. The required signal timings are on page 5 of the datasheet.
  26. 2 points
    xc6lx45

    Cmod S6 - Multilayer?

    You might go to Texas Instruments' site (or AD or both) and find documentation for some $500 high frequency ADC or DAC eval board as example to study.. There's nothing wrong with copper planes, generally. Free-standing structures (such as non-connected filler polygons) can be bad, if they resonate. So are loops if the driving wire spans an area together with the GND return wire (for which the ground plane is an obvious solution). The worst resonators have high quality factor meaning loose coupling meaning it can be surprising how the energy managed to couple in. There's no such thing as too many ground vias... Note, your ground plane can do very interesting things in combination with the metal box it's in (resonant cavity) but that's a different story.
  27. 2 points
    Hi, Abdul, Here are my notes/recommendations: 1. Open your block diagram in Vivado where you created BRAM configuration and then check the address editor. You should see whether the BRAM address was assigned. If you find assigned see axi_bram_ctrl_0 OffsetAdress and the Range then the BRAM was created and mapped to the memory. 2. Writing and reading from BRAM requires a clock signal. Check Xilinx templates for BRAM which you can access inside the Vivado. I am not sure that the code you've used to write into BRAM does anything. 3. You don't use an absolute address in your HDL when BRAM created in Vivado. Vivado maps the address 0x4000_0000 to 0. So you can start from the address 0 and it will be the lowest address of the BRAM. If your don't use Vivado then you will need to define your block in HDL and include addresses, and many other parameters. 4. The C-code in SDK should use BRAM address from the file parameters.h. You just need to use XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEADDR as the begining of the BRAM address space. 5. You can treat BRAM as RAM meaning that all read/write operators are the same. For example you can copy BRAM content into the RAM: for(i = 0 ; i < BRAM_SIZE ; i++) *(destination + i) = *(source + i); where source = XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEADDR Disclaimer: always read documentation, whatever you find on Internet might not be correct. Good luck!
  28. 2 points
    HI @yottabyte, I realize (based on the time stamps) that you figured out the answer to your question before you got a response, but do you mind posting your original question and what you found out so any future users with a similar question would be able to see the answer you (and xc6lx45) found out? Thanks, JColvin
  29. 2 points
    attila

    AD2 over voltage :-(

    Hi @peter taylor This was a ferrite between the Analog Discovery and USB ground. Supposed to filter noise from USB cable/PC which acted as a fuse... You can solder a simple short instead this ferrite. Hopefully only this was damaged. Be careful. The devices and circuits should have the same ground. The AD ground is connected to the PC ground over the USB cable.
  30. 2 points
    jpeyron

    PS configuration help

    Hi @Newbiee, There are only a few pre-defined hardware platforms usable in SDK. I have attached a screen shot of the pre-defined hardware platforms in SDK 2018.2. The hardware platform is built from a bit stream generated and exported to SDK from Vivado. Bitstreams are board specific due to board specific pin assignment. Xilinx included hardware platforms of their fpga boards in SDK. The enclustra ZX3 (xilinx7020) does not look to be one of the pre-defined hardware platforms in SDK. I believe that you will need to generate a bitstream using Vivado. One of the reasons Digilent provides vivado board files for our boards is when running block automation it configures the microblaze/zynq processors correctly. cheers, Jon
  31. 2 points
    Hi @dbkincaid The LED dimming option for Digital Discovery is added for next WaveForms version 3.8.11
  32. 2 points
    awang735

    PMOD DA1 to zedboard

    Nevermind, i downloaded the digilent board files from https://reference.digilentinc.com/learn/software/tutorials/vivado-board-files/start?redirect=1 and was able to connect the pmod ip via the board tab in ip integrator like it says in the walkthrough
  33. 2 points
    BogdanVanca

    programming guide of zynq

    Hello @Ram, Please check this link : https://reference.digilentinc.com/learn/programmable-logic/tutorials/zybo-getting-started-with-zynq-server/start "This guide will provide a step by step walk-through of creating a Zynq based hardware design using the Vivado IP Integrator that will build over the Getting Started with Zynqguide by making use of the on-board Ethernet port and GPIOs for the Zybo FPGA board.". You can start from here, and use the same hardware logic but different type of application for uart, spi etc. Best Regards, Bogdan Vanca
  34. 2 points
    jpeyron

    How to read from SD card on ZYBO

    Hi @shahbaz, @Notarobot is correct. I forgot the Zynq processor has the xilffs library for the SD card and that the SDcard is directly connected to the PS. You should not use the Pmod SD IP Core. I have attached some screen shots that should help with getting your project going. I used the Zybo board files. Here is a tutorial on how to install the board files if have not done so already. thank you, Jon
  35. 2 points
    Notarobot

    How to read from SD card on ZYBO

    Hi shahbaz, If you are Ok using micro SD card adapter embedded in Zybo I would recommend to use it with the driver xsdps provided by Xilinx. Please note that it is connected and intended for use by PS not PL. The driver is located in Vivado library \embeddedsw\XilinxProcessorIPLib\drivers\sdps In Vivado the only thing is needed is enabling SD card in the processing system. Everything else is done in SDK. There you will need to add library xilffs to the BSP. File system and functions are described in here Good luck!
  36. 2 points
    mohammadhgh

    Zybo z7-20 Zynq Presets

    Hi @Mahesh, As @jpeyron said in the post marked as accepted solution, the Zynq processing system will be configured with the board presets when you first add the Zynq processing system IP core to the block design and run the block automation task from the green message that appears! Just remember to keep the Apply Board Preset option checked as shown in he picture. So this means if you are using the pre-built block design from the example project, a possible solution can be to remove the existing Zynq processing system block and adding a new one!
  37. 2 points
    Hi @Tickstart, Since your question was not directly related one of the Digilent FPGA boards, I have moved it to a different section of the Forum to hopefully produce less confusion for other readers. As for my personal perspective, I'm in a bit of an odd spot since I have a degree in chemical engineering rather than EE/CS/CompE, yet here I am helping answer questions on all of those things, meaning I don't have a lot (i.e. any) formal education with HDL design. But like Dan hinted at, I'd like to make sure that the people to be hired can "engineer" their way through a problem, not just hope that a single approach works for everything. Thanks, JColvin
  38. 2 points
    xc6lx45

    Cmod A7 oscillator question

    PS: Reading the above post: I suggest you DO use the IP wizard, not calculate it manually. Pain does not equal gain.
  39. 2 points
    @Aniq, I've never seen an FPGA board with a VGA input. You could certainly attempt to decode VGA with a fast ADC but it won't be trivial. VGA appeared on the old FPGA boards as HDMI/DVI still weren't mainstream yet. The cheaper FPGA boards offer VGA output using resistor ladder networks but really, the VGA monitor is disappearing. I'm not sure what you need to do with such a board but the best bet would be to find a generic FPGA board and compatible HDMI in/out adaptor and design you own VGA in/out interface. Most FPGA boards, except Atlys, Genesys2 use dedicated HDMI receiver or transmitter ICs which takes some control out of your hands. These devices are generally very programmable ( depending on how they are connected ) but not as flexible as say, the Atlys, but for a board like the Atlys you are responsible for creating the logic that the dedicated IC does. PAL, NTSC, SECAM etc are also video standards that have seen their day hit sunset.
  40. 2 points
    artvvb

    Zybo and PmodCAN

    @mbo Have you completed the Getting Started with Pmod IP Cores tutorial through to using Vivado SDK and programming your board? Your hardware looks fine. Using Pmod Header JF would be significantly more difficult than using any other header, since the MIO/EMIO pins don't use the same drivers as the AXI SPI controller that the Pmod CAN IP core wraps. The MIO pins are configured by customizing the Zynq7 Processing System block in Vivado IPI (they appear in the block design as part of the FIXED_IO interface). You can use the LoopBack.c example to make sure that your Zybo can talk to the Pmod CAN. LoopBack places the CAN controller into a mode where the controller receives it's own messages in hardware, so it is a good way of making sure that your hardware works. After that, you can program your hardware onto both Zybos, connecting each to a CAN, and connecting each of the CANs to one another. You can program one Zybo with the RX.c example and the other with the TX.c example. This set up should be able to send a packet defined in the example code from one Zybo to the other. You can demonstrate that this communication has happened by connecting both boards to serial terminals. Thanks, Arthur
  41. 2 points
    D@n

    Communication using pmod

    @jpeyron, @aksaltaaf, Why not implement a simple wired SPI protocol between the two boards? No PmodBT required, only a couple of wires required? Dan
  42. 2 points
    TE_JH

    PMOD with Trenz board

    Hi, the most Bank voltages (not all) are variable on TE0720, you can select different Bank voltages on TE0701, with Jumper, see: https://wiki.trenz-electronic.de/display/PD/4+x+5+SoM+Integration+Guide https://wiki.trenz-electronic.de/display/PD/TE0701+TRM You must use the value, which is set on the bank with your PMOD IOs. br John
  43. 2 points
    Although I flaunt here with other people's feathers it seemed to me a nice topic for the forum. I love practical examples for the Analog Discovery 2. I think this mix of old school technology with modern technology is fascinating, don't you think so? If you don't want this on the forum feel free to throw it off with confidence. Greetings, Hans
  44. 2 points
    D@n

    Buttons bounce

    For all of those who have never dealt with a contact bounce, I just finished measuring the response of pushing a whole slew of buttons: those on the Arty, the CMod-S6, the PMod-Keypad, and even on an icoBoard. It was a fun project. Here's an image showing one of the responses I came across, I'm hoping to post the others soon, but I thought this was just too fun not to share, Dan
  45. 2 points
    @Sam_a Should be fixed this time. Thanks for your patience, Arthur
  46. 2 points
    artvvb

    This darn simulator...

    @Tickstart The simulator can have issues with figuring out what a signal should be when it is derived from itself or another signal that is derived from the first signal. This is only a problem when the signal is not initially defined or all of the paths to derive it depend on it. I am more familiar with verilog, so take vhdl suggestions from me with that in mind, but the following is what I would suspect would help fix the problem. //file D_flipflop.v: //Verilog Before: `timescale 1ns / 1ps module dff ( input clk, input d, output reg q ); always@(posedge clk) q <= d; endmodule //Verilog After: `timescale 1ns / 1ps module dff ( input clk, input d, output reg q ); initial q <= 0; always@(posedge clk) q <= d; endmodule And my attempt at VHDL for the same thing: //File D_flipflop.vhd //Before: library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity D_flipflop is Port ( clk : in STD_LOGIC; d : in STD_LOGIC; q : out STD_LOGIC ); end D_flipflop; architecture Behavioral of D_flipflop is begin name: process (clk) begin if rising_edge(clk) then q <= d; end if; end process name; end Behavioral; //File D_flipflop.vhd //After addition of initial value: library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity D_flipflop is Port ( clk : in STD_LOGIC; d : in STD_LOGIC; q : out STD_LOGIC := '0' ); end D_flipflop; architecture Behavioral of D_flipflop is begin name: process (clk) begin if rising_edge(clk) then q <= d; end if; end process name; end Behavioral; My other suggestion would be to take a look at the RTL Analysis -> Elaborated Design -> Schematic for your project, this tool is used to help figure out what the logical circuits that your design is being translated into are. I've attached the schematic I generated for your design. The important thing here is that looking at the I signal's paths, everything route from I to a 'd' pin goes through an AND gate. This means that if the other input to each gate is undefined, the output of that gate will be undefined. In short, this was just a long way of saying that you probably need to add ' := '0' ' to your D_flipflop file. Hope this helps, Arthur
  47. 2 points
    Ciprian

    FPGA USB Audio

    I would recommend something Zynq based because you already have the USB controller in the ARM of the Zynq (Zybo or Zed). If you want to build your own USB controller or use a custom on in the FPGA than you have to find something with only FPGA (Nexys Video or Genesys 2). All four of these boards have an audio codec on them which supports the I2S protocol. Stay away from: Pynq, Arty Z7, Nexys 4 DDR and Nexys 4; these have an analog circuit which receives the audio samples via PWM or PDM, so no audio interface. Cipi
  48. 2 points
    The trick is your code does not need to infer a block memory generator. It will actually need to explicitly implement the block memory generator INTERFACE. This is because the block memory generator is already being instantiated in the block diagram. You will need to design a state machine in VHDL that properly implements the interface. For a description of the signals (en, we, addr, etc.) you should refer to the block memory generator Product Guide. You can find the guide by double clicking the block memory generator IP and selecting Documentation in the upper left corner. The end goal will be to create a custom IP core that contains this custom VHDL. Since you do not have an AXI interface on your core, this should be pretty easy. I believe you can just create a new project that targets the ZYBO and has its top level ports be the desired ports on the IP block. Then I think you can run the Create and Package IP wizard from the tools menu to convert the project to an IP core so it can be inserted into you block diagram (which will be in a different vivado project). I'd recommend simulating your project before you convert it to an IP core to help make sure it is functioning as expected. BTW, you can just expand the BRAM_PORTB interface on the block memory generator IP core and manually connect each of the signals to your IP core if you have difficulty making you custom IP implement the BRAM interface. See the picture below for an example of what your end goal will be:
  49. 2 points
    jpeyron

    Cant Generate a License File

    @JColvin I'm not sure what happened there. But the link is here. cheers, Jon
  50. 2 points
    D@n

    Hello fellow Zybo enthusiasts!

    Yeah, I can understand why you would want to move away from a Spartan 6 LX9. That's an awfully small chip, with barely any capability. Still--it's not an impossible chip to work with. For example, here [and here] is a project that manages to place a ZipCPU and a pre-emptive multi-tasking O/S onto the CMod S6--a board that also uses the Spartan 6 LX9. My advice: Don't let your imagination be limited by any limitations of the board or chip that you have. It's amazing what you can do with some of these things. Yours, Dan