Leaderboard


Popular Content

Showing content with the highest reputation since 09/29/16 in all areas

  1. 5 points
    attila

    WaveForms beta download

    3.11.4 digilent.waveforms_beta_v3.11.4_64bit.exe Added: - Scope: - set/reset zero offset in each channel option - precision option for measurements Fixed: - Script: access to traces and channels from Instrument.Export - unit conversions V to Ṽ, A to à - I2S 32 bit data 3.11.3 digilent.waveforms_beta_v3.11.3_64bit.exe digilent.waveforms_beta_3.11.3_amd64.deb digilent.waveforms_beta_3.11.3.x86_64.rpm Fixes 3.11.2 digilent.waveforms_beta_v3.11.2_64bit.exe digilent.waveforms_beta_3.11.2_amd64.deb digilent.waveforms_beta_3.11.2.x86_64.rpm Added: - Spectrum, Network and Impedance Analyzer store time data when this view is open Fixed: - runscript argument - loading of docked views geometry 3.11.1 digilent.waveforms_beta_v3.11.1_64bit.exe digilent.waveforms_beta_3.11.1_amd64.deb digilent.waveforms_beta_3.11.1.x86_64.rpm Added: - Scope: out of range warning in measurements - Protocol/UART: - support up to 32bit/word - TX/RX format: text, binary, decimal, hex - Wheel Direction option - Logic Analyzer: option to swap previous/next events - Spectrum Analyzer: allowing higher number of BINs for CZT 3.10.7 digilent.waveforms_beta_v3.10.7_64bit.exe Added: - Spectrum: logarithmic magnitude scale for voltage units - Protocol: datetime stamp for SPI/I2C Spy Fixes 3.10.6 digilent.waveforms_beta_v3.10.6_64bit.exe Added: - Scope - access to digital channels from custom mathematic channels - digital measurements view Fixes 3.10.5 digilent.waveforms_beta_v3.10.5_64bit.exe digilent.waveforms_beta_3.10.5_amd64.deb digilent.waveforms_beta_3.10.5.x86_64.rpm Added: - Power Supplies for AD2: tracking, slider, min/max - Logic Analyzer: Measurements - Impedance Analyze: DC mode compensation - SDK VB wrapper, C# wrapper updated Fixed: - EExplorer Wavegen AM/FM index precision for sine 3.10.4 digilent.waveforms_beta_v3.10.4_64bit.exe Fixed: - decimal resolution in Export, Data and Event views 3.10.3 digilent.waveforms_beta_v3.10.3_64bit.exe digilent.waveforms_beta_v3.10.3.dmg digilent.waveforms_beta_3.10.3_amd64.deb digilent.waveforms_beta_3.10.3.x86_64.rpm Added: - UART format option (binary, decimal...) - SDK I2C without clock stretching - SDK examples: Digital_I2c_PmodAcl.py, Digital_I2c_PmodGyro.py - Spectrum Analyzer THDN measurement, THDp and THDNp in percentage units - Impedance Analyzer: - constant current, voltage, custom script for amplitude and resistance control - Option to disable mouse drag and wheel operations on plots - Impedance/Network Analyzer: averaging time - Wavegen: extended frequency option Changed: - special values (none, off) moved to end of the preset list 3.10.2 digilent.waveforms_beta_v3.10.2_64bit.exe digilent.waveforms_beta_v3.10.2_32bit.exe digilent.waveforms_beta_v3.10.2.dmg digilent.waveforms_beta_v3.10.2_mavericks.dmg digilent.waveforms_beta_3.10.2_amd64.deb digilent.waveforms_beta_3.10.2_i386.deb digilent.waveforms_beta_3.10.2.x86_64.rpm digilent.waveforms_beta_3.10.2.i686.rpm Added: - Impedance Analyzer - voltage, current and custom plots - edit Meter list - Resistance mode for Meter, Frequency DC option - step mode in Time view - Netowrk Analyzer - step mode in Time and FFT views - amplitude table and custom function Fixed: - Help minor fix - Protocol SPI and I2C Sensor rate improvement - StaticIO button lock 3.8.22 digilent.waveforms_beta_v3.8.22_64bit.exe digilent.waveforms_beta_v3.8.22_32bit.exe Added: - Impedance differential setup, W1-C1P-DUT-C1N-C2-R-GND 3.8.21 digilent.waveforms_beta_v3.8.21_64bit.exe digilent.waveforms_beta_v3.8.21_32bit.exe digilent.waveforms_beta_v3.8.21.dmg digilent.waveforms_beta_3.8.21_amd64.deb digilent.waveforms_beta_3.8.21_i386.deb digilent.waveforms_beta_3.8.21.x86_64.rpm digilent.waveforms_beta_3.8.21.i686.rpm Added: - data property for impedance/network channels. - Impedance.Resistor.reference property - instruments accessible without index in Script tool like Scope. Fixes... 3.8.20 digilent.waveforms_beta_v3.8.20_64bit.exe Added: - Logger function access to other channels value, average, min, max - Script access to Logger channel set data property, getting average, minimum, maximum Fixed: - Logger Show/Maximum - Script Protocol.I2C.Clear() function 3.8.18 digilent.waveforms_beta_v3.8.18_64bit.exe digilent.waveforms_beta_v3.8.18_32bit.exe digilent.waveforms_beta_v3.8.18.dmg Added: - Network Analyzer - logarithmic scale and percentage unit - spectrum measurements: Carrier, THD+N, THD, HD# - FFT view - Averaging option 3.8.17 digilent.waveforms_beta_v3.8.17_64bit.exe digilent.waveforms_beta_v3.8.17_32bit.exe digilent.waveforms_beta_v3.8.17.dmg digilent.waveforms_beta_3.8.17_amd64.deb digilent.waveforms_beta_3.8.17_i386.deb digilent.waveforms_beta_3.8.17.x86_64.rpm digilent.waveforms_beta_3.8.17.i686.rpm Added: - Scope - persistence support for smooth curve and min/max sampling - custom math - current value in custom math function, can be used for averaging - initialization code for integration purposes - examples - unit presets for: ohm, degree, VAC, AAC - Spectrum - Import/Export samples for Traces - trace information option - Range option to adjust all the scope input ranges - Network and Spectrum - Script support for set magnitude property - Step size and steps per decade settings - Network Analyzer - custom plots: THD, HD2, HD3 - Protocol - I2C/Spy glitch filter based on frequency setting - Device options - On Close: Run (keep running), Stop, Shutdown - USB Power: Always ON or Stop with AUX for AD2 - USB Limit: USB current limitation AD1,2 - Audio Output: AD1, 2 - WaveForms SDK FDwfParamSet/Get, FDwfDeviceParamSet/Get - DwfParamOnClose, DwfParamUsbPower, DwfParamLedBrightness, DwfParamAudioOut, DwfParamUsbLimit - Notes toolbar show/hide option - on/off icon for toggle buttons: supply enable, network analyzer reference... - show entire capture button Changed: - renewed mouse wheel, drag and key (left,right,up,down) operation on plots and axis Fixed: - EExplorer output glitch during first device connection - NI VI crash when initializing without device connected - Scope XY plot 3.8.11 digilent.waveforms_v3.8.11_64bit.exe digilent.waveforms_v3.8.11_32bit.exe digilent.waveforms_v3.8.11.dmg digilent.waveforms_3.8.11_amd64.deb digilent.waveforms_3.8.11_i386.deb digilent.waveforms_3.8.11.x86_64.rpm digilent.waveforms_3.8.11.i686.rpm Added: - Digital Discovery: - LED brightness option - Logic Analyzer - ASCII format for: Bus, SPI, I2C, I2S - Format option for I2C - Logic Analyzer and Patterns - Line Color option - Protocol - Format option for SPI and I2C: Hexadecimal, Decimal, Binary, ASCII - Plot Width option in application settings Changed: - drawing quality improvement for thicker lines - color dialog buttons renamed to Close and Reset 3.8.9 digilent.waveforms_v3.8.9_64bit.exe digilent.waveforms_v3.8.9_32bit.exe digilent.waveforms_v3.8.9.dmg digilent.waveforms_3.8.9_amd64.deb digilent.waveforms_3.8.9_i386.deb digilent.waveforms_3.8.9.x86_64.rpm digilent.waveforms_3.8.9.i686.rpm Added: - WF/Settings/Options: Locale with System or English US regional option, export and import options - SDK: FDwfParamSet/Get function - Scope: measurement resolution Fixed: - minor issues 3.8.8 digilent.waveforms_v3.8.8_64bit.exe digilent.waveforms_v3.8.8_32bit.exe digilent.waveforms_v3.8.8.dmg Added: - WF SDK: - examples updated to be Python v3 compatible - FDwfAnalogImpedance functions for impedance/network analysis - Protocol: CAN receiver filter by ID - Impedance: Export information about amplitude and offset Fixed: - WF SDK: FDwfDigitalSpi functions read MISO/RX 3.8.7 digilent.waveforms_v3.8.7_64bit.exe Fixed: - Scope: save/load of coefficients for custom Math channel filter 3.8.6 digilent.waveforms_v3.8.6_64bit.exe digilent.waveforms_3.8.6_amd64.deb Added: - Export: Wavegen and Supplies information added to Scope, Spectrum, Impedance, Network export comments Fixed: - Script Tool.exec timeout - CAN high polarity option in Protocol tool and WF SDK 3.8.5 digilent.waveforms_v3.8.5_64bit.exe Added - Script functions: getSaveFile, getOpenFile, getDirectory - Scope: multiple scales, zero offset - Notes view - Export options: notes, header as comment - Help tab: floating/undock option, find with highlight Fixed: - Impedance Analyzer frequency scale in export 3.7.22 digilent.waveforms_v3.7.22_64bit.exe digilent.waveforms_v3.7.22_32bit.exe digilent.waveforms_v3.7.22.dmg digilent.waveforms_3.7.22_amd64.deb digilent.waveforms_3.7.22_i386.deb digilent.waveforms_3.7.22.x86_64.rpm digilent.waveforms_3.7.22.i686.rpm Added - Scope/Logic View/Logging picture format - Script: - Export function for instruments - access to Protocol/UART/RX using Receiver, Receive and ReceiveArray functions, SendArray Fixed - Scope edge trigger position for all devices, when only one or two samples are above the threshold - other minor fixes 3.7.21 digilent.waveforms_v3.7.21_64bit.exe digilent.waveforms_v3.7.21_32bit.exe digilent.waveforms_3.7.21_amd64.deb digilent.waveforms_3.7.21_i386.deb digilent.waveforms_3.7.21.x86_64.rpm digilent.waveforms_3.7.21.i686.rpm Added - Wavegen dynamic configuration, adjustments without restarting the generator - SDK support for CAN bus TX, RX - more detail in Spectrum, Network and Impedance Analyzer export comments - import data orientation option Fixed - Network Analyzer Meter export and copy - Data Logger quick measurements - other fixes and optimizations 3.7.19 digilent.waveforms_v3.7.19-2_64bit.exe digilent.waveforms_v3.7.19-2_32bit.exe digilent.waveforms_v3.7.19.dmg digilent.waveforms_3.7.19-2_amd64.deb digilent.waveforms_3.7.19-2_i386.deb digilent.waveforms_3.7.19-2.x86_64.rpm digilent.waveforms_3.7.19-2.i686.rpm Added: - Logic I2S Show channel option - SDK functions for UART, SPI, I2C master and UART receiver Changed: - OS-X rollback to FTDI driver 1.2.2 Fixed: - Impedance Analyzer: save/load of views positions - other fixes and optimizations 3.7.15 digilent.waveforms_v3.7.15_64bit.exe digilent.waveforms_v3.7.15_32bit.exe Added: - Logic Analyzer: position (Nth word) option for SPI trigger on value - Impedance: Nyquist plot; settle time, minimum periods options - Wavegen, Network/Impedance Analyzer: external Amplification option - Tabbed/Docking window switching from main window Changed: - lower frequency limit for Scope, AWG, Network, Impedance Fixed: - 10ns delay in Logic Analyzer Sync and Protocol interface - Sound Card device CPU usage 3.7.14 digilent.waveforms_v3.7.14_64bit.exe digilent.waveforms_v3.7.14_32bit.exe Added: - Protocol I2C ACK/NAK last read byte option Changed: - Windows XP, Vista compatible FTDI driver in 32bit installer 3.7.13 digilent.waveforms_v3.7.13_64bit.exe digilent.waveforms_v3.7.13_32bit.exe digilent.waveforms_v3.7.13.dmg digilent.waveforms_3.7.13_amd64.deb digilent.waveforms_3.7.13_i386.deb digilent.waveforms_3.7.13.x86_64.rpm digilent.waveforms_3.7.13.i686.rpm Added: - Sound Card device of the computer can be used as Scope and Wavegen - Scope sampling clock for Electronics Explorer - Logic Analyzer data compression for recording, for Electronics Explorer - Scope and Wavegen support for 4th device configuration of Analog Discovery 1 & 2 - Scope Logging Repeat option - Scope Audio view: Stereo, Tempo options - MacOS option for application menu 3.7.12-2 digilent.waveforms_v3.7.12-2_64bit.exe Fixed: - Analog Discovery 2 configuration file descriptions 3.7.12 digilent.waveforms_v3.7.12_64bit.exe digilent.waveforms_v3.7.12_32bit.exe Added: - Scope sampling clock under time options, for Analog Discovery 1 & 2. The trigger IOs can be used as sample clock with delay and edge options. - Logic Analyzer data compression for recording, for Analog Discovery 1 & 2 Changed: - Windows installer: - embedded prerequisites: Windows Installer, Visual C++ Redistributable 9 32/64bit, 12 64bit - split installer for 32bit and 64bit WF applications, but the included WF runtime for custom applications support both architectures Fixed: - Logic Analyzer UART frame error threshold 3.7.10 digilent.waveforms_v3.7.10.exe Added: - Spectrum Analyzer Markers Fixed: - SDK Electronics Explorer enumeration - Scope Math channel unit presets 3.7.9 digilent.waveforms_v3.7.9.exe Fixing: - Logic Analyzer Event view double click for signals 3.7.8 digilent.waveforms_v3.7.8.exe Changed: - Impedance Analyzer: - view names - solid line for magnitude Fixed: - Impedance Analyzer admittance |Y| value 3.7.7 digilent.waveforms_v3.7.7.exe Added: - Scope and Logic trigger detector for trigger source Fixed: - warning message when connecting to EExplorer - Patterns trigger on Digital Discovery.
  2. 3 points
    Ciprian

    Digital Twin

    Hi @Kris Persyn, It depends on how you manage your resources, driving immersive visuals on a HDMI display can be done in multiple ways at different resolutions, some are PL taxing others are DDR taxing; you could generate entire frame buffers in PL or PS or you could find a optimal algorithm to change just the previous frame or you could allocate a high number of frame buffers and then run them in a loop. It also depends on how math lab synthesizes the IP you will need to add to your design. If you design your project properly and don't aim for a resolution higher more 720p( I'm being conservative, we managed to drive the HDMI at 1080p with processing filters without a problem) I think it should be enough for what you want to do, resource wise. My suggestion, download and install Vivado, download and install the board files, create and implement your project look at the resource consumption and then buy a board. - Ciprian
  3. 3 points
    In your constraint file, the ddc pins have lowercase "ddc_scl_io" and "ddc_sda_io". Your block design has the port in uppercase "DDC". The case must match. Try editing your constraint file to have "DDC_scl_io" and "DDC_sda_io".
  4. 3 points
    jpeyron

    pmod wifi

    Hi @harika, I believe the HTML web page error is related to the materials on the SD card. 1) Please attach a screen shot of the contents of the Sd card you are using. 2) Please follow the YouTube video here from about 6 minutes and 28 seconds on for how to set up the HTTP server project. Make sure to update the login an password for the router/modem you are using. thank you, Jon
  5. 3 points
    @thobie, the bare-metal purchase option for the Zybo was done to enable a lower price point for those who do not require the accessories. For the rest of our customers, adding the Accessory Kit is recommended during the purchase process. You are not the first and the last to complain about version compatibility. It is economically unfeasible for us to update all support projects, IP and support packages provided for free four times per year for each Vivado version. Instead we made a commitment to consider the last Vivado release in each year stable and do a once-a-year update cycle. In that regard, 2017.4 is the version we are upgrading projects to. There is a question whether OOB designs should be updated at all, or kept at the version which generated the binary image shipped with the board. The board presets are not versioned for Vivado (no version-specific releases in our git repo), because these should be forward-compatible with Vivado versions. The critical warning itself related to CK-to-DQS delays being negative appears starting with 2017.4. The negative values are due to CK trace being shorter than any of the four DQS traces. In the early days of Zynq board design negative values where listed as sub-optimal, but not erroneous. Tree topology instead of fly-by was also among the routing recommendations for DDR3 layouts. So the Zybo was designed with this sub-optimal layout due to space constraints. During Write Leveling calibration, 0 is used as an initial value instead of the negative preset delays. After calibration, if the skew is still too low, the clock is inverted. See ug585 pg 316 for more details. All Zybos shipped to customers are functionally tested and pass the DDR3 calibration process. Xilinx recommendations changed in the mean time, both in terms of routing topology and delay values. A trace of this can be found here: https://www.xilinx.com/support/answers/53039.html. The > 0ns requirement was introduced to be in line with non-Zynq MIG-based designs, where negative delays were never permitted. Since these delays are board-dependent, we would need to re-design the board to make the delay positive. This is impossible with the current form-factor. Another option would be modifying the board preset file and forcing a zero value instead of the actual delay. The tools seem to be using zero anyway for calibration. This will have to be thoroughly verified first.
  6. 3 points
    Hello, I've posted the next part in my FPGA graphics series using the Arty + VGA Pmod or Basys 3. It shows you how to make use of double buffering to animate sprites using simple Verilog. https://timetoexplore.net/blog/arty-fpga-vga-verilog-03 Feedback very welcome, Will PS. I'll add the source to GitHub shortly.
  7. 3 points
    An FPGA can be a useful "swiss army knife", but all the nice features aren't easily accessible. Enter "LabToy": A batteries-included collection of utilities, just double-click and go. As the name implies, this isn't meant to compete against "real" test equipment. The main selling point is like a pocket knife - this fits into a shirt pocket and the power tools don't. And speaking of "selling points", it's free to use. So what do we have here: - Digital data: Shows the input state of all pins - Analog data: Readings from the two ADCs, up to about 700 ksps sustained (XADC "simultaneous sampling" mode, phase-accurate between channels) - Streaming data logger: Both analog and digital data can be written to a .vcd file, to be shown in gtkwave. There is no limit to the capture length. - Analog signal generator: 8 fully independent channels, sine, square wave, the usual suspects. Well, the DACs won't win any audiophile awards, but they are usable. - "Programmable" digital LED mode: Configurable pulse width to suppress short glitches, or edge detect with a built-in pulse generator to highlight them. - Analog LED mode: Shows the input value of the ADC in real time Some screenshots: 1k sine / cosine from DAC jumpered to ADC (in gtkwave) The digital signal is the generator's sync output that can be recorded as a digital input. Realtime display of the inputs. With pocket knives in mind ("this button will unlock the large blade, allowing it to be manually returned to its folded position") I decided to keep the screen uncluttered and put descriptions into tooltips. The large displays are the average voltage readings from the ADC. The smaller ones show the digital inputs in groups of four. Generator controls (frequency, minimum voltage, maximum voltage, phase). The voltage scaling is a bit unusual (typically there is "AC magnitude" and "DC offset") but I chose this approach because it shows clearly the limitations of the 0..3.3V output range. Most people will probably leave all this at the default values for a full-scale signal. Data capture Example: The output in gtkwave after I touched a jumper cable to the digital inputs on the DIL connector. +++ DO NOT USE THE +5V OUTPUT P24 FOR THIS KIND OF TEST +++ (3.3 V is available on the PMOD connector, bottom row) The red "undefined" marks flag the first input in an 8-bit group. In this example, they aren't too meaningful, but they can alert me to the fact that no data events have been observed yet. LED control The two numbers give the number of consecutive 1 or 0 samples (at 125 MHz) before a signal change is propagated to the LED. E.g. put 125 million there and it'll take one second after changing the input state for the LED to light / go dark. Those can be used interactively to study an unknown signal. "Level": no further processing ("level" mode and 1 / 1 sample counts is equivalent to directly connecting the LED to the physical input) "Edge" mode generates a brief pulse on signal changes, the LED is dark otherwise. "Invert" flips the input right next to the pin (0 becomes 1, black becomes white and man gets himself killed on the next zebra crossing -DA). How to get it: The file is attached: labToy0v1_beta.exe The installer unpacks a single .exe. Happy hacking! Requirements: Windows 64 bit (!) .NET 4.5 FTDI libraries CMOD A7 35 T (not 15 T). Warnings: Direct access to digital IO pins is an inherently dangerous activity. "PROVIDED WITHOUT WARRANTY OF ANY KIND" means Just That. And beware of the +5V pin. PS: If you try it, kindly let me know whether it works, or what goes wrong.
  8. 3 points
    attila

    Using script with Spectrum on AD2

    Hi @tomtektest, @abzza With WaveForms Script THD and other measurement logging and plotting can be automated, like this: function doTHD(){ var rgTHD = [] var rgFreq = [] for(var idx = 1; idx <= 100; idx++){ Wavegen1.Channel1.Simple.Frequency.value = 1000*idx Wavegen1.run() // start AWG wait(0.01) // settle time for the external circuit, expressed in seconds Spectrum1.Frequency.Stop.value = 20*Wavegen1.Channel1.Simple.Frequency.value // adjust analyzer stop frequency Spectrum1.single() // start acquisition if(!Spectrum1.wait()){ // wait to finish return; } rgFreq.push(Spectrum1.Trace1.measureFreq("FF")) rgTHD.push(Spectrum1.Trace1.measure("THD")) } Wavegen1.stop() print(rgFreq, rgTHD) // print data for copy paste // draw in plot1, View / Add plot plot1.X.Units.text = "Hz" plot1.Y1.Units.text = "dBc" plot1.X.data = rgFreq plot1.Y1.data = rgTHD } doTHD();
  9. 3 points
    zygot

    Rants about FPGA tool chain(s)

    @D@n , Here's a secret; I'm whispering because this is just between you and me: At places where they do a lot of quality FPGA development work no one ever brings up a GUI for anything. All of the toolchain invocation is done using Perl and TCL/TKL. Shhhh. Don't tell anyone....
  10. 3 points
    A few reasons are... a - The introduction of logic hazards can cause glitches : https://en.wikipedia.org/wiki/Hazard_(logic) b - Routing of clocks is very complex - It is hard to ensure that the same clock edge appears all over the FPGA at almost exactly the same time. Sometimes this is achieved with 'slight of hand' (e.g. using a on-chip PLL to advance phase of the clock, so that by the time it reaches the edge of the chip is in back phase with the original signal). Low-skew paths also exist, but are restricted to small areas of the FPGA, and the clock has to be connected to the correct pin to be placed and routed correctly. c - FPGAs and their tools are designed to behave predictably under the "synchronous digital design" paradigm (something like https://hps.hs-regensburg.de/scm39115/homepage/education/courses/red/2_SynchronousDigitalCircuitDesignRules.pdf). If you work outside the paradigm you will be fighting against the tools and their assumptions. d - There is almost nothing that you are unable to code in an FPGA friendly way, but there are infinitely many ways to write FPGA-hostile code. If you want your FPGA to place nice with you, you have to play nice with it. So you can either add an RC filter to debounce you switch, or you can sample it using a reliable clock.
  11. 3 points
    D@n

    Just for fun: Frequency Resolution challenge

    Hello everybody! Since I was sharing this image with others, I thought I'd share it here at Digilent as well. The attached image shows the frequency response of several FFT windows, including the well-known rectangle and Hanning windows. The blue window is one I've put together, but haven't shared the FPGA source code used to implement it. I challenge anyone to do better. Oh, and one other comment ... all but the Hanning window can be used in an invertible FFT process. Dan
  12. 3 points
    Tempest2k8

    OpenScope Mechanical STL Files

    Printed out on the Form Labs at my local TechShop.
  13. 3 points
    jpeyron

    Cmod A7 35T GPIO demo Error

    Hi @coloradosensors, I just generated bitstream on this project in Vivado 2015.4. You need to right click on the clocking wizard and remove it. Then under project manager click on ip catalog and re-add the clocking wizard with default settings. This will fix your issues with using an older version of Vivado for this project. cheers, Jon
  14. 3 points
    D@n

    Lots of fun UART testing code

    Hello Digilent Community! I just finished putting the finishing touches on a UART demonstration project that you can find here. The project was originally intended to share a C++ class that could work with Verilator to prove that anyone's UART implementation was working. However, after I got into it, I realized the project had a lot of value that others might appreciate. As an example, consider this post by @martin16. Had he used any of the testing mechanisms listed below, he might have known which side of the RS232 port he was working with was at fault. The core contains a complete implementation of both a transmit and receive UART encoder/decoder. These can be easily taken from my project and placed within your own. (Subject, of course, to the limits of the GPL v3) The core also contains a (fairly) generic FIFO implementation. For those wondering how to implement a FIFO, you may find this valuable as well. For those who would rather interact with a serial port over a bus, such as the wishbone bus, there are two approaches within the project that can be used to hook it up to a wishbone bus. One can be used within a larger wishbone slave module, the second as a standalone module. Both are Wishbone B4 compliant, and both use the pipeline mode--allowing you to read/write multiple values on consecutive clocks from/to the controller. Of course, this only really makes sense when using the FIFO. Those might be valuable enough on their own, but you can probably find without too much additional work other implementations of the above. Therefore this project includes some even more valuable files: It includes a series of test programs/configurations that can be used to determine if the hardware on your board is working properly. If you are like me, you've struggled every time you've tried to get a serial port working on a new board. Should you connect your output to the TX or to the RX line? Do you have the UART set up properly, at the right baud rate? Can you handle more than just single values at once? How fast can you transmit/receive? To help you answer these questions, the project file contains the following test configurations: Hello World: You know, that old fashioned hello world program? I would recommend trying this program on your board after you can blink an LED at your favorite rate, or equivalently after you know that your clock works. This particular project is so simple that it depends upon only the clock input and the UART transmit output. Getting this program running on your board will demonstrate that you understand your clock, and that you can modify your I/O constraint file properly, and that you know how to connect a terminal program to your board in order to observe the results. Line Test: Once you've got a hello world program running, so that you know the output UART pin works, then it is time to test the input UART pin. This is the purpose of the line test testing program. It works by reading a line of data (either until a newline or 80--characters), and then dumping that line to the output. (Don't forget to turn off hardware flow control, and be aware of the differences between a new line and a carriage return!) SpeechFifo: Finally, there's a program that can be used to test the FIFO capabilities found within the wishbone UART peripheral. This program uses the FIFO capability to make certain the transmitter stays fully loaded for over a thousand characters of output bytes. (No, this isn't computer speech generation, but rather a computer dumping a Abraham Lincoln's Gettysburg Address across the UART port.) Each of these configurations has a corresponding Verilator simulation file associated with it, allowing you to simulate the functionality within them as part of Verilator. The project includes, like I mentioned above, a C++ class that can be used to determine if your own UART is transmitting correctly under a Verilator simuation. This class can also be used generate UART signaling in order to test if your RTL can receive it properly. (See the line test C++ harness discussed below for an example of this.) As complements to each of the testing configurations above, the project contains C++ files to drive each of those within a Verilator context. Some unique features include: The Line Test C++ test harness automatically generates a linetest.vcd file that can be used together with GTKwave to study how the core works. Further, it can be run in either an interactive or an automated mode. The Speech Test C++ test harness can be used in an automated mode, or with the -i switch in a more interactive mode. In this latter mode, the speech test program generates a speechtrace.vcd file that can be used with GTK wave to understand how the UART transmitter, FIFO, the wishbone bus decoder, or even the test harness itself. I hope you find these as valuable as I have. Please feel free to post any questions or comments you might have about this project below. Dan
  15. 3 points
    LariSan

    Birth of an OpenScope!

    We got a series of photos of the OpenScope going through the manufacturing line. Unfortunately, Kickstarter didn't allow me to load all of them onto the update.
  16. 3 points
    D@n

    Nexys 4 DDR

    @gnicholls, Wow, what a good and thorough question. You've hit the nail on the head, and you are asking something a lot of users are asking. So in answer, may I reply, Welcome to the wonderful world of FPGA design! DDR memory is hard. I mean, really hard. I tried for about two solid months to get a DDR3 memory up and running, and eventually moved on because it was taking too much time to do. You can still find the project here, though--and I still hope to return to it--eventually. Xilinx has written a variety of App notes describing how they've gone about creating their reference solution. For 7-series devices, you can find their note here--but it just doesn't tell you much. I've found the most useful information in their note from a couple generations back, found here for a Virtex-5. Bottom line: it's *really* hard--most people only use the reference solution, and then make the reference solution work for their design. I love the examples found at fpga4fun.com. They tend to work through many of the basic I/Os that FPGAs need to work with, and how to build controllers for each of them. Another useful website is Asic-World--it's just not one I've ever gotten into. Xilinx has tried to make your problem easier with their platform studio and now its Vivado replacement--allowing you to connect via point and click various different Xilinx components together to make one of many (fairly) pre-canned designs. Many of the Digilent based "tutorials" or "examples" are of this type. I personally find them wanting, for many reasons: They are "too easy"--offering you no insight for how they are accomplished internally. They are so much of a black box that you cannot examine what they did or how they did it in order to modify it, debug it, or even learn from it. It can be difficult to integrate your own work with their components. They are all focused on how to use someone else's components, but offer little in the way of teaching you how to build your own. In the end, they leave you stuck with Xilinx solutions. Any components you create/develop will only ever work with Xilinx. This leaves you forever wedded to the Xilinx platform, or forced to relearn all you have learned. Verilog (and <gasp> even VHDL) is a better language than that--capable of doing a lot more. And if that's not enough, your design that works with one version of Vivado may well break when the next one comes out because ... they changed something. (This is an ongoing problem, and a thorn in Digilent's side--suggestions are always welcome.) I have personally been trying to work to create somewhat of a solution to your problem, but I'll admit my own designs are perhaps far from the professor's materials that you are looking for. You can find many of my Verilog designs on github here. A recent design I've put together for both beginners and more experienced types alike can be found here. It contains examples of how to create a serial port, both transmitter and receiver, together with some top level designs that use such a port. As the task of figuring out which pin is which on any board is fairly common--even among experienced users, these offer examples you can work with to make sure you have your serial port working. My efforts have gone so far as to even build my own CPU, flash controller(s), SD-card controller, GPS controller, real-time clock, 7-segment controller, FFT, VGA controller, etc. I mean, why when you buy a board would you only learn to work with some of it, right? You can find a fairly complete design here, using a CMod-S6, that places a CPU onto the S6 with a minimal multi-tasking "operating system". I'm also working on a more complicated design for the Arty here--this one uses the Xilinx generated MIG DDR3 SDRAM, such as you have on your Nexys 4 DDR. This design is currently somewhat on hold, as I am trying to update the CPU within it to a more mainstream CPU that will even support the C-library. (Today's success: I managed to get newlib to compile for it! This is after updating the assembler, linker, GCC compiler backend, etc.) If you are a hard-core VHDL type, Xess.com has put together a fascinating library of VHDL routines to demo how to use their boards. To my knowledge though, the tutorial information within their libraries is ... a bit harder to follow than the simple point and click designs Xilinx peddles. One of the things I've noticed about many (most, all?) of the more complicated FPGA designs I've come across is that they all depend upon some form of internal bus by which things can be connected. Once you get past learning about how to build the simple peripherals fpga4fun wishes to teach you, you're next step is really to learn about that bus structure. Why? If for no other reason than memories seem to be best accessed via a bus, so anything using a DDR type of memory tends to send its requests over a bus. This can easily become a bottleneck to your design, but ... it sort of comes with the territory. You can build other memories and distribute them throughout your FPGA, but the amount of block RAM memory you will get within any FPGA tends to be ... never enough. Hence you are often stuck with the external memory chip(s). Xilinx uses the AXI bus protocol. You can find the specification for it here. I haven't found any good tutorials on how to use it, but there's a way you can get Vivado to generate a sample AXI-lite design that you can interface with. (I can google it if you are interested--I just don't have it at my fingertips.) I've personally used the Wishbone Bus protocol, version B4, pipelined mode. Many others use version B3. I find that I can transfer data 3x faster using B4. To get from the Wishbone Bus to a DDR memory, controlled via Xilinx's Memory Interface Generated AXI controller, I built a wishbone-AXI bridge. Others of these also exist. There's an open source package manger out there called fusesoc which was designed to facilitate composing solutions from many different FPGA components together. In particular, the OpenRISC team has put a lot of work into making sure their CPU's, peripherals, and board designs can be built using this package manager. (These tend to connect to each other via the wishbone B3 standard.) If you dig into this, you can probably find many, many examples of working peripherals for various boards--although that community does tend to focus more on the Altera boards than the Xilinx boards, and Verilog more than VHDL. So ... when I build a new design, how do I do it? For every board of Digilent's that I have bought, I start with the reference page, look up the schematic to see how the components are connected, and then google the part numbers on the schematic. Those will contain the instructions you need to access the various chips on your board. They are usually where things pick up next after you leave the canned tutorials and examples. I hope I haven't overwhelmed you, but really ... where you go next is up to you. What would you like to do? Dan P.S.: My favorite description of RTL design for those who know nothing about FPGA's is, "Infuriatingly complex in its simplicity." Everything you do will be simple--like the clock divider. But too many of these very "simple" components can become so complex that it very quickly gets under your skin.
  17. 3 points
    hamster

    Welcome!

    My name is Mike, and I've developed a bit of an obsession with FPGAs. You might be able to find some project ideas or inspiration on my WIki at http://hamsterworks.co.nz/mediawiki/index.php/FPGA_Projects I'm always happy to talk FPGAs, so feel free to drop me an email sometime
  18. 2 points
    SeanS

    Genesys 2 DDR Constraints

    Hi JColvin, I am definitely not using ISE. I think JPeyron had it correctly. I didn't have my board.Repopaths variable set and so the project wasn't finding the board files. Once I set this variable as suggested, the pin mapping and IO types were auto populated as expected. Kudos, Sean
  19. 2 points
    True. Zygot believes that making you work for knowledge is kinder than giving you solutions that can be used to mindlessly resolve your problem of the hour.... it's just a different philosophical bent...
  20. 2 points
    The hot plug detect should be on the rx side. The source will see that and will then initiate the DDC conversation.
  21. 2 points
    >> having about 60uF of ceramic decoupling goodness Maybe it's even more a question of ESR than capacitance. Ceramic if money doesn't matter (e.g. Mouser: 22 µF: €4..6). The typical solution are staggered capacitors, with a quick look at the datasheet for the self resonance frequency in the impedance curve. I do this for RF (try to get a quality short at n GHz...) but if I had to make a blind guess, I'd use two orders of magnitude, e.g. 10 µ, 100n, 1n and with a nervous glance at my Voodoo doll, 10p. The CMOD A7 is reported quite frequently (possibly because it's one of the most attractive boards) but I can tell that I've run into the same issues with FTDI's reference module for the 2232H. The chip just shuts down if it doesn't like what it sees on VCC. It took a long Friday night in the lab to prove without doubt that our system is sensitive to USB cables. We changed the design and shipped with non-detachable cable. Zero issues so far.
  22. 2 points
    HI @yottabyte, I realize (based on the time stamps) that you figured out the answer to your question before you got a response, but do you mind posting your original question and what you found out so any future users with a similar question would be able to see the answer you (and xc6lx45) found out? Thanks, JColvin
  23. 2 points
    xc6lx45

    Voice-activited

    >> Is that solution Will run? I suspect you mean crosscorrelation, and no, it will most likely not work. Maybe you'll save yourself much pain if you prototype the algorithm first in software. It doesn't need to be real time. E.g. get freeware Octave and use the audioread() function. Be sure to use two independent recordings for reference and simulated microphone input.
  24. 2 points
    attila

    AD2 over voltage :-(

    Hi @peter taylor This was a ferrite between the Analog Discovery and USB ground. Supposed to filter noise from USB cable/PC which acted as a fuse... You can solder a simple short instead this ferrite. Hopefully only this was damaged. Be careful. The devices and circuits should have the same ground. The AD ground is connected to the PC ground over the USB cable.
  25. 2 points
    elodg

    Nexys Video "Feet"

    https://www.fastenal.com/products/details/0146057 https://www.fastenal.com/products/details/28783
  26. 2 points
    attila

    Math on FFT traces

    Hi @lab!fyi We could add math to the Spectrum Analyzer interface. At the moment you could use Script with plot for such purpose. Collect the data in Spectrum Trace 1 and 2, in Script tool View/Add plot and Run the following script: plot1.X.Units.text = "Hz" plot1.Y1.Units.text = "dB" plot1.X.data = Spectrum1.Trace1.frequency var t1 = Spectrum1.Trace1.magnitude var t2 = Spectrum1.Trace2.magnitude var c = t1.length var d = [] for(var i = 0; i < c; i++){ d.push(t2[i]-t1[i]) } plot1.Y1.data = d
  27. 2 points
    awang735

    PMOD DA1 to zedboard

    Nevermind, i downloaded the digilent board files from https://reference.digilentinc.com/learn/software/tutorials/vivado-board-files/start?redirect=1 and was able to connect the pmod ip via the board tab in ip integrator like it says in the walkthrough
  28. 2 points
    @hamster I was able to run your AXI Slave interface. It works great! It is now very easy to exchange information between PS and PL, and it even supports execute-in-place (e.g. I can put ARM instructions to register file and run PS CPU directly from it). I have some questions about your AXI Slave design: 1) AXI_a*size has no effect on INCR type of burst transactions, but according to AXI protocol: the increment value depends on the size of the transfer. You set it only for WRAP type, is it correct? Thus, burst size is always 0 for INCR type? 2) Do you know how PS initiates INCR burst type? A kind of memset/memcpy need to be used for that or an incrementing pointer will also work? 3) Where WRAP type is necessary? How to use PS to work in WRAP mode? You may also update your wiki page with following: 0) Create provided VHDL files 1) Create a block-diagram and add PS IP core to it 2) Apply configuration provided by your board's pre-settings; this will set all necessary initialization settings for PS (e.g. clock frequencies, DDR bindings, etc.) 3) Press auto-configure (or how it's called) ==> this will connect PS IP to DDR and to fixed IO 4) Add "External ports" to the diagram (create new AXI_CLK and AXI external ports) and connect them to PS ports 5) Generate VHDL wrapping code for this block diagram 6) Put generated system under axi_test_top by renaming it to axi_test_wrapper (default name is design_#_wrapper in my Vivado version) 7) This will auto-connect block-diagram external ports with axi_test_top 8 ) Add constrains file and rename/uncomment external ports where necessary 9) Generate bitstream 10) File->Export->Hardware and create .hwf file which contains PS configuration 11) Open Xilinx SDK and create a new project: select .hwf file as Hardware BSP for this project 12) Now, Xilinx SDK will auto-generate few .c and .h files which contain necessary PS initialization ==> clocks, IRQs, DDR, etc. 13) Add hello_world.c application to the project @hamster Thank you very much. I've learned a bunch of new things thanks to your help!
  29. 2 points
    Hello @Akshay Bhat, Please check this forum thread : . You will find in there a demo project for Zedboard that uses the Pmod interface to communicate with the the PMOD MTDS. You can use that project to provide your hardware platform. You are right, it's not an good idea to store 500 images on an sd card and try to dynamically swap them. My recommendation for you it's to go with this function: MTDS::TextOut(hds, xco, yco, cchText, rgchText). This function will draw the specified text string at the specified location. The only problem it's that you cannot change the char size. This feature it's not yet implemented into the mtds.h library. To see how exactly this function work, you can run MtdsTest22() from the same project. Also for more information please download the Arduino IDE from the fallowing link : https://reference.digilentinc.com/reference/software/mtds/start. Best Regards, Bogdan Vanca
  30. 2 points
    Ram

    vivado 2017.4

    Thank-you melisha ,,it is working Ram
  31. 2 points
    attila

    Analog Discovery 2 vs Raspberry Pi 3

    Hi @Phil_D @rprr The problem is that the USB IN packets/bytes are randomly lost/altered. I tried various kernel options, limiting the USB transfer rates but had no luck. The data corruption reduced from one in 1-60 seconds to one in 10-60 minutes, which it is still not good... It seems that the root of the problem is in the low level FTDI library, kernel or USB modules, or between them... The Analog Discovery is working fine with other SOCs but not with the RPi. I also notice issue with the USB keyboard I use with the RPi, time to time key presses are not received. You can find many similar RPi issues on the net: https://www.raspberrypi.org/forums/viewtopic.php?f=28&amp;t=5249&amp;sid=8839659cb92b7475fa196b2fad775d9f&amp;start=250 http://www.ftdicommunity.com/index.php?topic=40.0
  32. 2 points
    sage

    Zybo board repair

    Thanks @jpeyron. I am tempted to short R281 and power it though usb to check if it would work before i order the fuse. any suggestions. Ok I couldn't wait so I shorted the fuse and the PGOOD light came on.I haven't carried out any further test. I will wait until the fuse arrives. Thanks once again. Asim
  33. 2 points
    Hi @Tickstart, Since your question was not directly related one of the Digilent FPGA boards, I have moved it to a different section of the Forum to hopefully produce less confusion for other readers. As for my personal perspective, I'm in a bit of an odd spot since I have a degree in chemical engineering rather than EE/CS/CompE, yet here I am helping answer questions on all of those things, meaning I don't have a lot (i.e. any) formal education with HDL design. But like Dan hinted at, I'd like to make sure that the people to be hired can "engineer" their way through a problem, not just hope that a single approach works for everything. Thanks, JColvin
  34. 2 points
    I've just finished reinstalling the WF32 bootloader onto two of my WF32s, and I'm still getting the "Unable to signon, this does not look like a bootloader" error. I downloaded the bootloader from here: https://reference.digilentinc.com/reference/microprocessor/wf32/start I used chipKIT programmer, and programmed using the MPLAB IPE. The IPE claims that the bootloader was verified, so I'm wondering if there's maybe a problem with the bootloader I'm using. Either that or maybe the FTDI is busted? EDIT: I've figured out the problem and of course it was something stupid. While programming the bootloader, I had the VV Select jumper set to something other than UART. That's all. I've reprogrammed the bootloader and now everything works fine. Thanks for the help @james!
  35. 2 points
    morsucci

    Just Memory

    @deppenkaiser It is true that you can use /dev/mem and uio drivers to accomplish the same functionality. However, It is almost always a better idea to use uio as a opposed to /dev/mem Here is why: using /dev/mem directly opens your system up to security risks. You could be potentially accessing memory that can be harmful to your system. Additionally, other people may be able to exploit this to access memory that they would otherwise not be able to access. UIO provides kernel interrupt functionality. That is: UIO drivers can register interrupts with the kernel and the kernel can recognize when an interrupt has occurred and carry out the assigned task. Currently, the only way you would do this using /dev/mem is through polling of an interrupt register. Polling usually is not always the best approach, especially when you are trying to catch interrupts from FPGA hardware. Regards, Mitchell
  36. 2 points
    Hi @skakon, I have sent you a PM about this. Thanks, JColvin
  37. 2 points
    attila

    WaveForms 3.6.8 release

    Dear All, The new software version can be downloaded from the following page: https://reference.digilentinc.com/waveforms3 The changelog is available here: https://reference.digilentinc.com/reference/software/waveforms/waveforms-3/change-logs/3-6-8 See this blog for more details: https://blog.digilentinc.com/software-update-waveforms-3-6-8/ Please let us know if you have any observation. Thank you, Attila
  38. 2 points
    newkid_old

    Vivado not routing nets

    I wanted to add this post(rather a long time I know) that I have found a solution to my problem. My original intent was to read, using LVDS, a TI3423 development board from the Digilient Arty board. Utilizing the PMOD header I was able to connect and read values from the ADC. Here are the details so that anyone wanting to do the same thing can benefit from my journey through Xilinx hell. Using Xilinx Vivado I used a SelectIO IP block. I then set the input to DDR and 2 lanes at 6 bits per lane and changed the input points to differential LVDS25. Since the bank is 3.3Vdc the differential input voltage can be seen on the inputs as long as you use 50ohm resistors across the P/N pairs. I used a small bread board where my resistors reside. The key to the data was the frame clock which frames the data. Xilinx does not mention how to use this clock and only by extensive searching their forums did I find a guru who states the frame clock can be used on the div_clk_in. On the SelectIO block IP under the clocks tab you have to change the clock to internal which will enable the div_clk_in input. This is where you land the frame clock. The SelectIO block expects differential inputs for the data but only wants single ended inputs for the clock and the frame. I had to place Utility Buffers under the Base IP catalog to bring in differential inputs from the ADC. To read the data I used the Microblaze uC, uart and 2 axi gpio ip blocks. I monitor the the frame clock and when it changes states I read the 12 bit word and transfer it out over uart. Cheers, Curt
  39. 2 points
    attila

    Signal generator

    Hi @koenraad In Network Analyzer interface to allow frequency above 10MHz under Wavegen options select Frequency Extended. In Wavegen interface you can generate a custom waveform with 2 periods of sine, so the actual frequency will be double of the one you set. Alternatively you have in private message instruction to enable directly setting higher frequencies.
  40. 2 points
    kriob

    Generating project failed

    Finally, everything works I loaded this repository previously just this time it works Thanks for all your help. Suddenly I learned a lot through this simple demo
  41. 2 points
    Hi, I haven't looked at the board's specs, but you can find examples at https://github.com/hamsternz/ArtyEtherentTX (100BaseT on the Arty board) https://github.com/hamsternz/FPGA_GigabitTx (1000BaseT on the Nexys Video board). They should be helpful to you.
  42. 2 points
    Hello Digilent Community, I am now officially done with my term and I want to share what my experience was like, as per @D@n's question. I would like to attach our final report here (we got an 86 on it, so please understand that it won't be the rest report haha). It was quite rushed since my partner and I were travelling during the last few days before the turn in date and the code in the appendices are quite scuffed. Vivado won't print PDFs in color and I haven't figured out how to fix the sizing or formatting, which is really inconvenient because it looks bad and not easy to read. If anyone has any questions about the code or writing at all, please feel free to private message me or just respond on this forum by tagging me! The idea behind how we wanted it to work, what it actually became, the struggles we had, and our theory on why it did not work again are included in the report along with our VHDL files and some testbench images. If they end up being too small of pictures, just let me know and i can attach the original ones here so it's easier to see. Thank you all for your help and consideration; it means to the world to me now and it meant the world to me before while I was working on this project.
  43. 2 points
    When I get this it is usually the uppercase/lowercase of the top level signals doens't match those used in the .XDC file. This is the only place case matters in a VHDL project!
  44. 2 points
    Check this out: https://github.com/Digilent/meta-manifest/wiki/Quick-start-guide#using-sdimg Basically you need to add a second partition to your SD card (use ext4 and make it at least 3.5 GB), then dd sdimg to it. The first partition should be FAT formatted and have the same download.bit, the same boot.bin, and sdroot-fitImage. You will need to rename sdroot-fitImage to fit.itb
  45. 2 points
    Kristoff

    Datalogger for two 16-bit sensors

    Hey Beleg, OpenScope uses the ADCs on the PIC32MZ which can be oversampled to provide increased resolution. Right now we're trying to stay focused on the 'general instrumentation' use case and our idea of logging will be pretty simple to start (just grab some point on demand and log them to a file, db, or similar). That being said we're already kicking around ideas for ways to get more channels at higher resolutions and we'd love to see some community firmware modifications that head in this direction. Feedback like this will help us determine what exactly we mean by 'more channels' and 'higher resolution' . Thanks! -Kristoff
  46. 2 points
    D@n

    UART

    @zahid, Yeah, ... but ... we still haven't solved your original problem--that of receiving every other letter when you pipe things directly from the GPS to your computer. But, at least now, we know some new things: We know that your computer isn't broken, neither is the serial port or terminal on it, and the cable you are using appears to be good then. We know there are no foreign character set issues, such as things that take 2 characters to print one. We know that it can successfully receive at 9600 Baud. (We're you trying with the extra stop bit, or not? So, the question now is, what happened and what can we do to fix it? Here's my thought: when you used the echo test program to read from your GPS device, we rounded the number of baud clocks downward (as the spec suggests). The result, though, was that the receiver--which calibrates its input to the start bit of each character, was receiving the characters in just a couple clocks fewer than the transmitter was using. The result, then, was that when the receiver was done with the second character -- the transmitter was still transmitting the last one. The receiver strobes the line for the transmitter to start (i_wr inside txuart.v), but the transmitter is still busy ... so it ignores the write request. By the time the next byte is received, the transmitter is now idle and ready to accept the next request. As a result, you got what you saw above: every other character received. The problem was in your FPGA code, and not within your host. Suppose we test this? If you want to go back to your echo test and try again, then try setting the i_setup register to one or two clocks faster. When I personally ran the test to echo what was received from the GPS receiver to the PC/host (I haven't posted the code for this), I switched the line speed from 9600 Baud up to 115,200 Baud or faster, such as 1MBaud. At this high speed, you wouldn't have a problem. To do this, you'd need to set the setup register on the transmitter (txuart) for 115,200 Baud and that on the receiver (rxuart) for 9600 Baud--you'd also set your PC for the 115,200 Baud. Another possibility might be to try the line testing program. This one should manage to do large strings without losing anything, but I expect it would still struggle after a long series of things were received--only to recover by the top of the next second. So, at this point, I think we know what's going on and can move forward successfully. Feel free to tell me how any of these new tests work! Dan
  47. 2 points
    D@n

    XADC demo

    @Manas, Sam is trying to turn voltage = (12-bit-code)/4096 into microvolts = (1000)*(1000)*(12-bit-code)/4096, and he's trying to avoid division. Rearranging: 1000*1000/4096 = 500*500/1024 (just by dropping common factors of two from both numerator and denominator) Shifting right by ten is equivalent to dividing by 1024, and then he multiplies by 500*500. Looks like it works alright. I might be concerned personally about losing any precision in the divide by 1024 (i.e. shift right by 10), especially since it is being done before the multiply if I understand correctly--leaving you with only 2-bits of precision (did I read that right?). Looking at the above, you might simplify it further into a shift right by 6, followed by a multiply of 15625. To get here, all I did was cancel out any factors of two that were in both the numerator and denominator. Then --- rearrange your order of operations, so the multiply is done first. What makes this choice special is that 15625 can fit within an 18-bit multiplier. Hence you can do: A = 15625*(12-bit-voltage-code) inside a DSP multiplier, and hence inside one clock. The result of this multiply will be a 30-bit number. If you ignore the bottom six bits, the 24-bit number that remains will be the number of microvolts that you are looking for. Converting this to a decimal display might take some more work though. Dan
  48. 2 points
    JColvin

    PMOD TMP3 on a Zybo

    Hello again, I spoke with the Pmod Product Manager and learned that for the Zybo Pmod Pack demo they ran into the same problem and just ended up using female right angle header (visual reference) they had lying around to get the Pmod TMP3 attached. She (the product manager) is going to look into getting a cable and header or something similar incorporated into the Pmod Packs (as needed per pack type). As a side note, I also learned that the new I2C style will be a 6-pin header (or 12-pin) with the I2C lines and the ground/power so that all of the I2C based Pmods can just plug into Pmod Host ports without any fuss. The function of the two extra pins will probably vary from Pmod to Pmod as necessary and how the pull-up resistors will be implemented needs to be ironed out, but I'm at least personally encouraged that oddball group of the Pmod family is being more formally accepted. Thanks, JColvin
  49. 2 points
    D@n

    XADC demo

    @Manas, Your problem lies between your top level file and your .xdc file. Basically, your top level file is trying to use pins that are not defined in your xadc file. As a result, Xilinx is finding these pins at your top level undefined, and it is causing an error when you try to build. So basically, the way to use XDC files is ... Download the master XDC file for your board from among the board support files. Comment out any pins you will not be using ('#' starts a comment, the comment continues to the end of the line) Rename any pins from your top level design file in the XDC file whose names don't match, so that the pin names do match between XDC and your top level. For the most part, you can name things in your top level to be anything you want--as long as you then match the names in the XDC file. (It is the XDC file that translates the names within your project to pins on the chip) Now, use that modified XDC file in your project. Dan
  50. 2 points
    That error isn't caused by a version mis-match... but you may run into some problems down the road. You might want to switch to petalinux 2015.4. We have a plan to update the ZYBO petalinux project to 2016.2, but no timeframe yet. I wouldn't recommend waiting for it. Back to the error you are getting, it is probably caused by the fact that your design doesn't have an axi_dynclk core in it, and therefore the system-top.dts file included with the project is trying to modify a device tree node that isn't being created by the tools. I recommend starting with the linux_bd project found in the ZYBO repository on our github, and then making your desired modifications to that project and importing that .hdf. That will ensure that several key aspects of the hardware design we used to generate the ZYBO petalinux project are present in your block diagram. For example, that project also routes an I2C controller over EMIO to the onboard EEPROM so that u-boot can read the globally unique MAC address from it and automatically configure the Ethernet controller to use it. If your design doesn't also route the I2C controller in this fashion, u-boot might fail (as it is configured in our petalinux project), or at the very least, you won't have a globally unique MAC address when you boot into Linux. Edit: If you want to stick with your project as is and try to get it working, then you will just need to tackle these problems as they come up, and we can help with that. To solve this problem, just open up system-top.dts and remove the node that references axi_dynclk_0 and all other nodes that refer to video output (one will be called xilinx_drm). Note your system will not include HDMI output capabilities.